|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи При каком наибольшем n можно раскрасить числа 1, 2, ..., 14 в красный и синий цвета так, чтобы для каждого числа k = 1, 2, ..., n нашлись пара синих чисел, разность между которыми равна k, и пара красных чисел, разность между которыми тоже равна k? В треугольнике ABC на стороне AB выбрана точка D такая, что На окружности отмечено десять точек. Сколько существует незамкнутых несамопересекающихся девятизвенных ломаных с вершинами в этих точках? Илья Муромец встречает трёхголового Змея Горыныча. Каждую минуту Илья
отрубает одну голову Змею. Пусть x – живучесть Змея (x > 0). Вероятность ps того, что на месте отрубленной головы вырастет s новых голов (s = 0, 1, 2), равна Через данную вершину A выпуклого четырёхугольника ABCD провести прямую, делящую его площадь пополам. При каком значении параметра m сумма квадратов корней уравнения x² – (m + 1)x + m – 1 = 0 является наименьшей? То же, если f(0) = 13, f(1) = 17, f(2) = 20, f(3) = 30, f(2n) = 43 f(n) + 57 f(n + 1), f(2n + 1) = 91 f(n) + 179 f(n + 1) при n≥2. |
Страница: 1 2 3 >> [Всего задач: 15]
На координатной плоскости изобразите множество точек, удовлетворяющих неравенству x²y – y ≥ 0.
При каком натуральном K величина
По положительным числам х и у вычисляют а = 1/y и b = y + 1/x. После этого находят С – наименьшее число из трёх: x, a и b.
Доказать, что если |ax² – bx + c| < 1 при любом x из отрезка [–1, 1], то и |(a + b)x² + c| < 1 на этом отрезке.
Имеется два набора чисел a1 > a2 > ... > an и b1 > b2 > ... > bn. Доказать, что a1b1 + a2b2 + ... + anbn > a1bn + a2bn–1 + ... + anb1.
Страница: 1 2 3 >> [Всего задач: 15] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|