ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 188]      



Задача 60559

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Произведения и факториалы ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 4
Классы: 9,10,11

Существует ли такое целое число r, что    является целым числом при любом n?

Прислать комментарий     Решение

Задача 64353

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Произведения и факториалы ]
[ Малая теорема Ферма ]
[ Доказательство от противного ]
Сложность: 4
Классы: 9,10,11

Найдите все такие натуральные k, что произведение первых k простых чисел, уменьшенное на 1, является точной степенью натурального числа (большей чем первая).

Прислать комментарий     Решение

Задача 64361

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Произведения и факториалы ]
[ Арифметика остатков (прочее) ]
[ Малая теорема Ферма ]
[ Доказательство от противного ]
Сложность: 4
Классы: 10,11

Найдите все такие натуральные k, что произведение первых k нечётных простых чисел, уменьшенное на 1, является точной степенью натурального числа (большей, чем первая).

Прислать комментарий     Решение

Задача 78613

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Производящие функции ]
Сложность: 4
Классы: 8,9,10

Из первых k простых чисел  2, 3, 5, ..., pk  (k > 5)  составлены всевозможные произведения, в которые каждое из чисел входит не более одного раза (например,  3·5, 3·7·... ·pk, 11  и т. д.). Обозначим сумму всех таких чисел через S. Доказать, что  S + 1  разлагается в произведение более 2k простых сомножителей.

Прислать комментарий     Решение

Задача 78682

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Разложение на множители ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 8,9,10

Известно, что  an – bn  делится на n (a, b, n – натуральные числа,  a ≠ b).  Доказать, что делится на n.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 188]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .