ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 157]      



Задача 73803

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Теория игр (прочее) ]
Сложность: 4
Классы: 7,8,9

Автор: Кацыло П.

В углу шахматной доски стоит фигура. Первый игрок может ходить ею два раза подряд как обычным конём (на два поля в одном направлении и на одно – в перпендикулярном), а второй – один раз как конём с удлинённым ходом (на три поля в одном направлении и на одно – в перпендикулярном). Так они ходят по очереди. Первый стремится к тому, чтобы поставить фигуру в противоположный угол, а второй – ему помешать. Кто из них выигрывает (размеры доски – n×n, где  n > 3)?

Прислать комментарий     Решение

Задача 78161

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 10,11

Игральная доска имеет форму ромба с углом 60°. Каждая сторона ромба разделена на девять частей. Через точки деления проведены прямые, параллельные сторонам и малой диагонали ромба, разбивающие доску на треугольные клетки. Если на некоторой клетке поставлена фишка, проведём через эту клетку три прямые, параллельные сторонам и малой диагонали ромба. Клетки, которые они пересекут, будут считаться побитыми фишкой. Каким наименьшим числом фишек можно побить все клетки доски?

Прислать комментарий     Решение

Задача 78242

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Обход графов ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9

На шахматной доске выбраны две клетки одинакового цвета.
Доказать, что ладья, начиная с первой, может обойти все клетки по разу, а на второй выбранной клетке побывать два раза.

Прислать комментарий     Решение

Задача 79245

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Последовательности (прочее) ]
[ Куб ]
[ Линейные неравенства и системы неравенств ]
[ Наглядная геометрия в пространстве ]
[ Средние величины ]
Сложность: 4
Классы: 10

Грани кубика занумерованы 1, 2, 3, 4, 5, 6, так, что сумма номеров на противоположных гранях кубика равна 7. Дана шахматная доска 50×50 клеток, каждая клетка равна грани кубика. Кубик перекатывается из левого нижнего угла доски в правый верхний. При перекатывании он каждый раз переваливается через свое ребро на соседнюю клетку, при этом разрешается двигаться только вправо или вверх (нельзя двигаться влево или вниз). На каждой из клеток на пути кубика имеется номер грани, которая опиралась на эту клетку. Какое наибольшее значение может принимать сумма всех написанных чисел? Какое наименьшее значение она может принимать?

Прислать комментарий     Решение

Задача 98457

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Шахматная раскраска ]
[ Четность и нечетность ]
[ Разбиения на пары и группы; биекции ]
[ Теория алгоритмов ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9

а) На каждом из полей верхней и нижней горизонтали шахматной доски 8×8 стоит по фишке: внизу – белые, вверху – чёрные. За один ход разрешается передвинуть любую фишку на соседнюю свободную клетку по вертикали или горизонтали. За какое наименьшее число ходов можно добиться того, чтобы все чёрные фишки стояли внизу, а белые – вверху?

б) Тот же вопрос для доски 7×7.

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 157]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .