ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Петя вырезал из пластмассы неравносторонний треугольник. Покажите, каким образом можно, пользуясь только этим инструментом как шаблоном, построить биссектрису какого-нибудь угла треугольника, равного вырезанному.

   Решение

Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 161]      



Задача 73755

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Геометрия на клетчатой бумаге ]
[ Наибольшая или наименьшая длина ]
[ Шахматная раскраска ]
[ Внутренность и внешность. Лемма Жордана ]
Сложность: 4
Классы: 9,10,11

Король обошёл шахматную доску, побывав на каждом поле ровно один раз и вернувшись последним ходом на исходное поле. (Король ходит по обычным правилам: за один ход он может перейти по горизонтали, вертикали или диагонали на любое соседнее поле.) Когда нарисовали его путь, последовательно соединив центры полей, которые он проходил, получилась замкнутая ломаная без самопересечений. Какую наименьшую и какую наибольшую длину может она иметь? (Сторона клетки равна единице.)

Прислать комментарий     Решение

Задача 73797

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Полуинварианты ]
[ Подсчет двумя способами ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 9,10,11

Какое наибольшее количество  а) ладей;  б) ферзей можно расставить на шахматной доске 8×8 так, чтобы каждая из этих фигур была под ударом не более чем одной из остальных?

Прислать комментарий     Решение

Задача 73803

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Теория игр (прочее) ]
Сложность: 4
Классы: 7,8,9

Автор: Кацыло П.

В углу шахматной доски стоит фигура. Первый игрок может ходить ею два раза подряд как обычным конём (на два поля в одном направлении и на одно – в перпендикулярном), а второй – один раз как конём с удлинённым ходом (на три поля в одном направлении и на одно – в перпендикулярном). Так они ходят по очереди. Первый стремится к тому, чтобы поставить фигуру в противоположный угол, а второй – ему помешать. Кто из них выигрывает (размеры доски – n×n, где  n > 3)?

Прислать комментарий     Решение

Задача 78161

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 10,11

Игральная доска имеет форму ромба с углом 60°. Каждая сторона ромба разделена на девять частей. Через точки деления проведены прямые, параллельные сторонам и малой диагонали ромба, разбивающие доску на треугольные клетки. Если на некоторой клетке поставлена фишка, проведём через эту клетку три прямые, параллельные сторонам и малой диагонали ромба. Клетки, которые они пересекут, будут считаться побитыми фишкой. Каким наименьшим числом фишек можно побить все клетки доски?

Прислать комментарий     Решение

Задача 78242

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Обход графов ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9

На шахматной доске выбраны две клетки одинакового цвета.
Доказать, что ладья, начиная с первой, может обойти все клетки по разу, а на второй выбранной клетке побывать два раза.

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 161]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .