ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 161]      



Задача 109542

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Выигрышные и проигрышные позиции ]
Сложность: 4
Классы: 7,8,9

Из квадратной доски 1000×1000 клеток удалены четыре прямоугольника 2×994 (см. рис.).

На клетке, помеченной звездочкой, стоит кентавр – фигура, которая за один ход может перемещаться на одну клетку вверх, влево или по диагонали вправо и вверх. Двое игроков ходят кентавром по очереди. Проигрывает тот, кто не может сделать очередной ход. Кто выигрывает при правильной игре?

Прислать комментарий     Решение

Задача 109827

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Разбиения на пары и группы; биекции ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 7,8,9,10

В некоторые 16 клеток доски 8×8 поставили по ладье. Какое наименьшее количество пар бьющих друг друга ладей могло при этом оказаться?

Прислать комментарий     Решение

Задача 115401

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9,10,11

В некоторых клетках доски 10×10 поставили k ладей, и затем отметили все клетки, которые бьёт хотя бы одна ладья (ладья бьёт и клетку, на которой стоит). При каком наибольшем k может оказаться, что после удаления с доски любой ладьи хотя бы одна отмеченная клетка окажется не под боем?

Прислать комментарий     Решение

Задача 115418

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Вспомогательная раскраска (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 9

Восемь клеток одной диагонали шахматной доски назовём забором. Ладья ходит по доске, не наступая на одну и ту же клетку дважды и не наступая на клетки забора (промежуточные клетки не считаются посещёнными). Какое наибольшее число прыжков через забор может совершить ладья?

Прислать комментарий     Решение

Задача 116046

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Доказательство от противного ]
[ Принцип крайнего (прочее) ]
Сложность: 4
Классы: 8,9

Клетчатый прямоугольник разбит на двухклеточные доминошки. В каждой доминошке провели одну из двух диагоналей. Оказалось, что никакие диагонали не имеют общих концов. Докажите, что ровно два из четырёх углов прямоугольника являются концами диагоналей.

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 161]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .