Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 161]
|
|
|
Сложность: 4 Классы: 7,8,9
|
Из квадратной доски 1000×1000 клеток удалены четыре прямоугольника 2×994 (см. рис.).
На клетке, помеченной звездочкой, стоит
кентавр – фигура, которая за один ход может перемещаться на одну клетку вверх, влево или по диагонали вправо и вверх. Двое игроков ходят кентавром по очереди. Проигрывает тот, кто не может сделать очередной ход. Кто выигрывает при правильной игре?
|
|
|
Сложность: 4 Классы: 7,8,9,10
|
В некоторые 16 клеток доски 8×8 поставили по ладье. Какое наименьшее количество пар бьющих друг друга ладей могло при этом оказаться?
|
|
|
Сложность: 4 Классы: 8,9,10,11
|
В некоторых клетках доски 10×10 поставили k ладей, и затем отметили все клетки, которые бьёт хотя бы одна ладья (ладья бьёт и клетку, на которой стоит). При каком наибольшем k может оказаться, что после удаления с доски любой ладьи хотя бы одна отмеченная клетка окажется не под боем?
Восемь клеток одной диагонали шахматной доски назовём забором. Ладья ходит по доске, не наступая на одну и ту же клетку дважды и не наступая на клетки забора (промежуточные клетки не считаются посещёнными). Какое наибольшее число прыжков через забор может совершить ладья?
Клетчатый прямоугольник разбит на двухклеточные доминошки. В каждой доминошке провели одну из двух диагоналей. Оказалось, что никакие диагонали не имеют общих концов. Докажите, что ровно два из четырёх углов прямоугольника являются концами диагоналей.
Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 161]