ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 161]      



Задача 103766

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Обход графов ]
[ Теория алгоритмов (прочее) ]
Сложность: 4-
Классы: 8

Али-Баба стоит с большим мешком монет в углу пустой прямоугольной пещеры размером m×n клеток, раскрашенных в шахматном порядке. Из любой клетки он может сделать шаг в любую из четырёх соседних клеток (вверх, вниз, вправо или влево). При этом он должен либо положить одну монету в этой клетке, либо забрать из неё одну монету, если, конечно, она не пуста. Может ли после прогулки Али-Бабы по пещере оказаться, что на чёрных клетках лежит ровно по одной монете, а на белых монет нет?

Прислать комментарий     Решение


Задача 111789

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Шахматная раскраска ]
[ Инварианты ]
[ Монотонность и ограниченность ]
Сложность: 4-
Классы: 8

На шахматной доске расставлены во всех клетках 32 белых и 32 черных пешки. Пешка может бить пешки противоположного цвета, делая ход по диагонали на одну клетку и становясь на место взятой пешки (белые пешки могут бить только вправо-вверх и влево-вверх, а чёрные – только влево-вниз и вправо-вниз). Другим образом пешки ходить не могут. Какое наименьшее количество пешек может остаться на доске?

Прислать комментарий     Решение

Задача 116671

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Примеры и контрпримеры. Конструкции ]
[ Комбинаторика (прочее) ]
Сложность: 4-
Классы: 7,8,9

Клетки доски размером 5×5 раскрашены в шахматном порядке (угловые клетки – чёрные). По чёрным клеткам этой доски двигается фигура – мини-слон, оставляя след на каждой клетке, где он побывал, и больше в эту клетку не возвращаясь. Мини-слон может ходить либо в свободные от следов соседние (по диагонали) клетки, либо прыгать (также по диагонали) через одну клетку, в которой оставлен след, на свободную клетку за ней. Какое наибольшее количество клеток сможет посетить мини-слон?

Прислать комментарий     Решение

Задача 116716

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Симметричная стратегия ]
Сложность: 4-
Классы: 10,11

Белая ладья стоит на поле b2 шахматной доски 8×8, а чёрная – на поле c4. Игроки ходят по очереди, каждый – своей ладьей, начинают белые. Запрещается ставить свою ладью под бой другой ладьи, а также на поле, где уже побывала какая-нибудь ладья. Тот, кто не может сделать ход, проигрывает. Кто из игроков может обеспечить себе победу, как бы ни играл другой? (За ход ладья сдвигается по горизонтали или вертикали на любое число клеток, и считается, что она побывала только в начальной и конечной клетках этого хода.)

Прислать комментарий     Решение

Задача 64528

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Четность и нечетность ]
[ Процессы и операции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 9,10,11

На каждой клетке доски 10×10 стоит фишка. Разрешается выбрать диагональ, на которой стоит чётное число фишек, и снять с неё любую фишку.
Какое наибольшее число фишек можно убрать с доски такими операциями?

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 161]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .