ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 161]      



Задача 77994

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Четность и нечетность ]
[ Индукция (прочее) ]
[ Шахматная раскраска ]
Сложность: 4-
Классы: 8,9,10

На бесконечной шахматной доске стоит конь. Найти все клетки, куда он может попасть за 2n ходов.

Прислать комментарий     Решение

Задача 98398

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Правило произведения ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 8,9,10

Назовём лабиринтом шахматную доску 8×8, где между некоторыми полями вставлены перегородки. Если ладья может обойти все поля, не перепрыгивая через перегородки, то лабиринт называется хорошим, иначе – плохим. Каких лабиринтов больше – хороших или плохих?

Прислать комментарий     Решение

Задача 98512

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Четность и нечетность ]
[ Инварианты ]
Сложность: 4-
Классы: 10,11

На доске размером 15×15 клеток расставили 15 ладей, не бьющих друг друга. Затем каждую ладью передвинули ходом коня.
Докажите, что теперь какие-то две ладьи будут бить друг друга.

Прислать комментарий     Решение

Задача 98516

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Теория игр (прочее) ]
Сложность: 4-
Классы: 9,10,11

Двое играют на доске 3×100 клеток: кладут по очереди на свободные клетки доминошки 1×2. Первый игрок кладёт доминошки, направленные вдоль доски, второй – в поперечном направлении. Проигрывает тот, кто не может сделать ход. Кто из играющих может обеспечить себе победу (как бы ни играл его противник), и как ему следует играть?

Прислать комментарий     Решение

Задача 98546

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Примеры и контрпримеры. Конструкции ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 8,9

Саша выставляет на пустую шахматную доску ладьи: первую – куда захочет, а каждую следующую ставит так, чтобы она побила нечётное число ранее выставленных ладей. Какое наибольшее число ладей он сможет так выставить?

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 161]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .