Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 161]
|
|
|
Сложность: 4- Классы: 8,9,10
|
На бесконечной шахматной доске стоит конь. Найти все клетки, куда он может
попасть за 2n ходов.
|
|
|
Сложность: 4- Классы: 8,9,10
|
Назовём лабиринтом шахматную доску 8×8, где между некоторыми полями вставлены перегородки. Если ладья может обойти все поля, не перепрыгивая через перегородки, то лабиринт называется хорошим, иначе – плохим. Каких лабиринтов больше – хороших или плохих?
|
|
|
Сложность: 4- Классы: 10,11
|
На доске размером 15×15 клеток расставили 15 ладей, не бьющих друг друга.
Затем каждую ладью передвинули ходом коня.
Докажите, что теперь какие-то две ладьи будут бить друг друга.
|
|
|
Сложность: 4- Классы: 9,10,11
|
Двое играют на доске 3×100 клеток: кладут по очереди на свободные клетки
доминошки 1×2. Первый игрок кладёт доминошки, направленные вдоль доски,
второй – в поперечном направлении. Проигрывает тот, кто не может сделать ход. Кто из играющих может обеспечить себе победу (как бы ни играл его
противник), и как ему следует играть?
Саша выставляет на пустую шахматную доску ладьи: первую – куда захочет, а каждую следующую ставит так, чтобы она побила нечётное число ранее выставленных ладей. Какое наибольшее число ладей он сможет так выставить?
Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 161]