ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Когда Гулливер попал в Лилипутию, он обнаружил, что там все вещи ровно в 12 раз короче, чем на его родине. Сможете ли Вы сказать, сколько лилипутских спичечных коробков поместится в спичечный коробок Гулливера?

Вниз   Решение


Автор: Фольклор

На ребрах произвольного тетраэдра указали направления. Может ли сумма полученных таким образом шести векторов оказаться равной нуль-вектору?

ВверхВниз   Решение


а) Даны прямые a, b, c, d, проходящие через одну точку, и прямая l, через эту точку не проходящая. Пусть A, B, C, D — точки пересечения прямой l с прямыми a, b, c, d соответственно. Докажите, что (abcd )= (ABCD).
б) Докажите, что двойное отношение четверки точек сохраняется при проективных преобразованиях.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 78]      



Задача 79380

Темы:   [ Линейные неравенства и системы неравенств ]
[ Средние величины ]
Сложность: 3
Классы: 9

Доказать, что если  a1a2a3 ≤ ... ≤ a10,  то   1/6 (a1 + ... + a6) ≤ 1/10 (a1 + ... + a10).

Прислать комментарий     Решение

Задача 79510

Тема:   [ Линейные неравенства и системы неравенств ]
Сложность: 3
Классы: 9

Доказать, что если  a > b > 0  и  x/a < y/b,  то справедливо неравенство  

Прислать комментарий     Решение

Задача 88101

Темы:   [ Линейные неравенства и системы неравенств ]
[ Разбиения на пары и группы; биекции ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 3
Классы: 5,6,7

Дано 25 чисел. Известно, что сумма любых четырёх из них положительна. Верно ли, что сумма всех чисел положительна?

Прислать комментарий     Решение

Задача 98126

Тема:   [ Линейные неравенства и системы неравенств ]
Сложность: 3
Классы: 8,9

Окружность разбита на семь дуг так, что сумма каждых двух соседних дуг не превышает 103°.
Назовите такое наибольшее число A, что при любом таком разбиении каждая из семи дуг содержит не меньше A°.

Прислать комментарий     Решение

Задача 98136

Тема:   [ Линейные неравенства и системы неравенств ]
Сложность: 3
Классы: 7,8,9

По окружности выписано 10 чисел, их сумма равна 100. Известно, что сумма каждой тройки чисел, стоящих подряд, не меньше 29.
Укажите такое наименьшее число A, что в любом таком наборе чисел каждое из чисел не превышает A.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 78]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .