|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Когда Гулливер попал в Лилипутию, он обнаружил, что там все вещи ровно в 12 раз короче, чем на его родине. Сможете ли Вы сказать, сколько лилипутских спичечных коробков поместится в спичечный коробок Гулливера? На ребрах произвольного тетраэдра указали направления. Может ли сумма полученных таким образом шести векторов оказаться равной нуль-вектору? а) Даны прямые a, b, c, d, проходящие через одну точку, и прямая l, через эту точку не проходящая. Пусть A, B, C, D — точки пересечения прямой l с прямыми a, b, c, d соответственно. Докажите, что (abcd )= (ABCD). б) Докажите, что двойное отношение четверки точек сохраняется при проективных преобразованиях. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 78]
Доказать, что если a > b > 0 и x/a < y/b, то справедливо неравенство
Дано 25 чисел. Известно, что сумма любых четырёх из них положительна. Верно ли, что сумма всех чисел положительна?
Окружность разбита на семь дуг так, что сумма каждых двух соседних дуг не
превышает 103°.
По окружности выписано 10 чисел, их сумма равна 100. Известно, что сумма каждой
тройки чисел, стоящих подряд, не меньше 29.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 78] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|