ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 77]      



Задача 66484

Темы:   [ Квадратный трехчлен (прочее) ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 3
Классы: 8,9,10,11

Графики квадратного трёхчлена и его производной разбивают координатную плоскость на четыре части. Сколько корней имеет этот квадратный трёхчлен?
Прислать комментарий     Решение


Задача 66858

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 3
Классы: 8,9,10,11

На плоскости даны две параболы: $y=x^2$ и $y=x^2-1$. Пусть U – множество всех точек плоскости, лежащих между параболами (включая точки на самих параболах). Существует ли отрезок длины более $10^6$, целиком содержащийся в U?
Прислать комментарий     Решение


Задача 109457

Темы:   [ Исследование квадратного трехчлена ]
[ Графики и ГМТ на координатной плоскости ]
[ Доказательство от противного ]
Сложность: 3
Классы: 8,9,10,11

На рисунке изображены графики трёх квадратных трёчленов.
Можно ли подобрать такие числа a, b и c, чтобы это были графики трёхчленов  ax² + bx + c,  bx² + cx + a  и  cx² + ax + b?

Прислать комментарий     Решение

Задача 109495

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 3
Классы: 8,9,10,11

На параболе  y = x²  выбраны четыре точки A, B, C, D так, что прямые AB и CD пересекаются на оси ординат.
Найдите абсциссу точки D, если абсциссы точек A, B и C равны a, b и c соответственно.

Прислать комментарий     Решение

Задача 116806

Темы:   [ Исследование квадратного трехчлена ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

На координатной плоскости задан график функции  y = kx + b  (см. рисунок). В той же координатной плоскости схематически постройте график функции  y = kx² + bx.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 77]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .