Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 78]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В магазине продают DVD-диски – по одному и упаковками двух видов (упаковки разных видов различаются по количеству и стоимости). Вася подсчитал, сколько требуется денег, чтобы купить N дисков (если выгоднее всего купить больше дисков, чем нужно – Вася так и делает):
Сколько дисков было в упаковках и по какой цене упаковки продавались?
Какое количество денег необходимо Васе, чтобы купить не менее 29 дисков?
Для заданных значений a, b, c и d
оказалось, что графики функций
и
имеют ровно одну общую точку. Докажите, что графики функций
и
также имеют ровно одну общую точку.
|
|
Сложность: 3+ Классы: 10,11
|
На плоскости нарисовали кривые y = cos x и x = 100 cos(100y) и отметили все точки их пересечения, координаты которых положительны. Пусть a – сумма абсцисс, а b – сумма ординат этих точек. Найдите a/b.
|
|
Сложность: 4- Классы: 8,9,10,11
|
На плоскости расположены две параболы так, что их оси взаимно перпендикулярны, а сами параболы пересекаются в четырёх точках.
Докажите, что эти четыре точки лежат на одной окружности.
|
|
Сложность: 4- Классы: 9,10,11
|
Дан числовой набор x1, ..., xn. Рассмотрим функцию
.
а) Верно ли, что функция d(t) принимает наименьшее значение в единственной точке, каков бы ни был набор чисел x1, ..., xn?
б) Сравните значения d(c) и d(m), где
, а m
– медиана указанного набора.
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 78]