ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Докажите, что если функция f (x) выпукла вверх на отрезке [a;b], то для любых различных точек x1, x2 из [a;b] и любых положительных $ \alpha_{1}^{}$, $ \alpha_{2}^{}$ таких, что $ \alpha_{1}^{}$ + $ \alpha_{2}^{}$ = 1 выполняется неравенство:

f$\displaystyle \left(\vphantom{\alpha_1x_1+\alpha_2x_2}\right.$$\displaystyle \alpha_{1}^{}$x1 + $\displaystyle \alpha_{2}^{}$x2$\displaystyle \left.\vphantom{\alpha_1x_1+\alpha_2x_2}\right)$ > $\displaystyle \alpha_{1}^{}$f (x1) + $\displaystyle \alpha_{2}^{}$f (x2).


Вниз   Решение


Докажите, что для любых x1,..., xn $ \in$ [0; $ \pi$] справедливо неравенство:

sin$\displaystyle \left(\vphantom{\dfrac{x_1+\ldots+x_n}{n}}\right.$$\displaystyle {\dfrac{x_1+\ldots+x_n}{n}}$$\displaystyle \left.\vphantom{\dfrac{x_1+\ldots+x_n}{n}}\right)$ $\displaystyle \geqslant$ $\displaystyle {\dfrac{\sin
x_1+\ldots+ \sin x_n}{n}}$.


ВверхВниз   Решение


Основание призмы ABCA1B1C1 – равносторонний треугольник ABC со стороной a . Ортогональная проекция вершины A1 совпадает с центром основания ABC , а боковое ребро образует с плоскостью основания угол 60o . Найдите боковую поверхность призмы.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 133]      



Задача 86954

Темы:   [ Призма (прочее) ]
[ Построения на проекционном чертеже ]
Сложность: 3
Классы: 10,11

В призме ABCA1B1C1 медианы оснований ABC и A1B1C1 пересекаются соответственно в точках O и O1 . Через середину отрезка OO1 проведена прямая, параллельная прямой CA1 . Найдите длину отрезка этой прямой, лежащего внутри призмы, если CA1 = a .
Прислать комментарий     Решение


Задача 87253

Темы:   [ Правильная призма ]
[ Двугранный угол ]
Сложность: 3
Классы: 8,9

Найдите объём правильной четырёхугольной призмы, если её диагональ образует с плоскостью боковой грани угол 30o , а сторона основания равна a .
Прислать комментарий     Решение


Задача 87263

Темы:   [ Правильная призма ]
[ Объем призмы ]
Сложность: 3
Классы: 8,9

Наибольшая диагональ правильной шестиугольной призмы равна d и составляет с боковым ребром призмы угол 30o . Найдите объём призмы.
Прислать комментарий     Решение


Задача 87272

Темы:   [ Призма (прочее) ]
[ Круглые тела (прочее) ]
Сложность: 3
Классы: 8,9

Основание призмы ABCA1B1C1 – равносторонний треугольник ABC со стороной a . Ортогональная проекция вершины A1 совпадает с центром основания ABC , а боковое ребро образует с плоскостью основания угол 60o . Найдите боковую поверхность призмы.
Прислать комментарий     Решение


Задача 87286

Темы:   [ Правильная призма ]
[ Теорема о трех перпендикулярах ]
[ Объем призмы ]
Сложность: 3
Классы: 8,9

В правильной треугольной призме плоскость, проходящая через сторону одного основания и противоположную ей вершину другого основания, образует с плоскостью основания угол, равный 45o . Площадь сечения равна S . Найдите объём призмы.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 133]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .