ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В классе $N$ школьников, среди них образовалось несколько компаний. Общительностью школьника назовём количество людей в наибольшей компании, куда он входит (если ни в одну не входит, то общительность равна $1$). Оказалось, что у всех девочек в классе общительность разная. Каково наибольшее возможное количество девочек в классе?

Вниз   Решение


Медианой пятиугольника ABCDE назовём отрезок, соединяющий вершину с серединой противолежащей стороны (A – с серединой CD, B – с серединой DE и т.д.). Докажите, что если четыре медианы выпуклого пятиугольника перпендикулярны сторонам, к которым они проведены, то таким же свойством обладает и пятая медиана.

ВверхВниз   Решение


По окружности выписано 10 чисел, сумма которых равна 100. Известно, что сумма каждых трёх чисел, стоящих рядом, не меньше 29.
Укажите такое наименьшее число А, что в любом таком наборе чисел каждое из чисел не превосходит А.

ВверхВниз   Решение


Автор: Saghafian M.

Мортеза отметил на плоскости шесть точек и нашел площади всех 20 треугольников с вершинами в этих точках. Может ли оказаться, что все полученные числа целые, а их сумма равна 2019?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 148]      



Задача 103947

Тема:   [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 2
Классы: 5,6,7

Найдите площадь фигур, изображенных на рисунке.

Прислать комментарий     Решение

Задача 66779

Темы:   [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Четность и нечетность ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Автор: Saghafian M.

Мортеза отметил на плоскости шесть точек и нашел площади всех 20 треугольников с вершинами в этих точках. Может ли оказаться, что все полученные числа целые, а их сумма равна 2019?
Прислать комментарий     Решение


Задача 110843

Темы:   [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Признаки и свойства касательной ]
Сложность: 3
Классы: 8,9

Центр окружности, касающейся катетов AC и BC прямоугольного треугольника ABC лежит на гипотенузе AB . Найдите радиус окружности, если он в шесть раз меньше суммы катетов, а площадь треугольника ABC равна 27.
Прислать комментарий     Решение


Задача 110844

Темы:   [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Признаки и свойства касательной ]
Сложность: 3
Классы: 8,9

Окружность с центром на стороне AC равнобедренного треугольника ABC ( AB=BC ) касается сторон AB и BC , а сторону AC делит на три равные части. Найдите радиус окружности, если площадь треугольника ABC равна 9 .
Прислать комментарий     Решение


Задача 110845

Темы:   [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Признаки и свойства касательной ]
Сложность: 3
Классы: 8,9

Центр окружности, касающейся катетов AC и BC прямоугольного треугольника ABC лежит на гипотенузе AB . Найдите диаметр окружности, если он в четыре раза меньше суммы катетов, а площадь треугольника ABC равна 16.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 148]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .