Версия для печати
Убрать все задачи
Из точки
M внутри четырёхугольника
ABCD опущены перпендикуляры на стороны. Основания перпендикуляров лежат внутри сторон. Обозначим эти основания: то, которое лежит на стороне
AB — через
X, лежащее на стороне
BC — через
Y, лежащее на стороне
CD — через
Z, лежащее на стороне
DA — через
T. Известно, что
AX ≥
XB,
BY ≥
YC,
CZ ≥
ZD,
DT ≥
TA. Докажите, что вокруг четырёхугольника
ABCD можно описать окружность.

Решение
Основанием пирамиды является треугольник
PQR , в котором
PR = 2
,
Q =
,
R =
.
Вершина
S пирамиды равноудалена от точек
P и
Q . Сфера касается
рёбер
PS ,
QS , продолжения ребра
RS за точку
S и плоскости
PQR . Точка касания с плоскостью основания пирамиды и ортогональная
проекция вершины
S на эту плоскость лежат на окружности, описанной
вокруг треугольника
PQR . Найдите рёбра
PS ,
QS ,
RS .


Решение
Даны прямоугольный треугольник ABC и две взаимно перпендикулярные прямые x и y, проходящие через вершину прямого угла A. Для точки X, движущейся по прямой x, определим yb как образ прямой y при симметрии относительно XB, а yc – как образ прямой y при симметрии относительно XC. Пусть yb и yс пересекаются в точке Y. Найдите геометрическое место точек Y (для несовпадающих yb и yс).

Решение