ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Основание пирамиды – правильный треугольник со стороной a . Высота пирамиды проходит через середину одной из сторон основания и равна . Найдите радиус сферы, описанной около пирамиды.

Вниз   Решение


В некотором государстве действует N фирм, конкурирующих между собой.
У каждой фирмы есть некоторая прибыль в год, равная V[i]
американских рублей.  У царя есть любимые фирмы,
а есть нелюбимые. Соответственно, налог для всех фирм разный и назначается
царем в индивидуальном порядке.
Налог на i-ую фирму равен p[i] процентов.
Собиратели статистики решили посчитать,
с какой фирмы в государственную казну идет наибольший доход
(в казну идут все налоги). К сожалению, они не учили в детстве
ни математику, ни информатику (так что учитесь, дети!),
и их задача резко осложняется. Помогите им в этой нелегкой задаче.

Входной файл input.txt
-----------------------
сначала записано число N - число фирм (0<N<=100).
Далее идет N целых неотрицательных чисел, не превышающих 154 - доходы фирм,
а затем еще N целых чисел от 0 до 100 - налоги фирм в процентах.

Выходной файл output.txt
------------------------
В выходной файл выведите одно число - номер фирмы, от которой государство
получает наибольший налог. Если таких фирм несколько, выведите любую из них.

Пример входного файла:
3
100 1 50
0 100 3

Пример выходного файла:
3

ВверхВниз   Решение


ABC - прямоугольный треугольник с прямым углом C. Докажите, что  cn > an + bn при n > 2.

ВверхВниз   Решение


На координатной плоскости изобразите множество точек, удовлетворяющих неравенству  x²y – y ≥ 0.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 15]      



Задача 65982

Тема:   [ Квадратные неравенства и системы неравенств ]
Сложность: 3
Классы: 9,10,11

На координатной плоскости изобразите множество точек, удовлетворяющих неравенству  x²y – y ≥ 0.

Прислать комментарий     Решение

Задача 97900

Темы:   [ Квадратные неравенства и системы неравенств ]
[ Ограниченность, монотонность ]
Сложность: 3
Классы: 8,9,10,11

Автор: Фольклор

При каком натуральном K величина     достигает максимального значения?

Прислать комментарий     Решение

Задача 65176

Тема:   [ Квадратные неравенства и системы неравенств ]
Сложность: 3+
Классы: 10,11

По положительным числам х и у вычисляют  а = 1/y  и  b = y + 1/x.  После этого находят С – наименьшее число из трёх: x, a и b.
Какое наибольшее значение может принимать C?

Прислать комментарий     Решение

Задача 78141

Темы:   [ Квадратные неравенства и системы неравенств ]
[ Исследование квадратного трехчлена ]
Сложность: 3+
Классы: 9,10,11

Доказать, что если  |ax² – bx + c| < 1  при любом x из отрезка  [–1, 1],  то и  |(a + b)x² + c| < 1  на этом отрезке.

Прислать комментарий     Решение

Задача 78186

Темы:   [ Квадратные неравенства и системы неравенств ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 8,9

Имеется два набора чисел  a1 > a2 > ... > an  и  b1 > b2 > ... > bn.  Доказать, что  a1b1 + a2b2 + ... + anbn > a1bn + a2bn–1 + ... + anb1.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .