ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

На доске написаны два 2007-значных числа. Известно, что из обоих чисел можно вычеркнуть по семь цифр так, чтобы получились одинаковые числа. Докажите, что в исходные числа можно вписать по семь цифр так, чтобы тоже получились одинаковые числа.

Вниз   Решение


С помощью циркуля и линейки постройте равносторонний треугольник, вершины которого лежат соответственно на трёх данных концентрических окружностях.

ВверхВниз   Решение


а) Может ли число, составленное только из четвёрок, делиться на число, составленное только из троек?
б) А наоборот?

ВверхВниз   Решение


Внутренняя точка A шара радиуса r соединена с поверхностью шара тремя отрезками прямых, имеющими длину l и проведёнными под углом α друг к другу. Найдите расстояние точки A от центра шара.

ВверхВниз   Решение


Сторона ромба ABCD равна 4. Расстояние между центрами окружностей, описанных около треугольников ACD и ABD , равно 3. Найдите радиусы этих окружностей.

ВверхВниз   Решение


Найдите объём правильной треугольной пирамиды со стороной основания a и боковым ребром b .

ВверхВниз   Решение


Сколько двоек будет в разложении на простые множители числа 1984! ?

ВверхВниз   Решение


Точка H лежит на большем основании AD равнобедренной трапеции ABCD , причём CH – высота трапеции. Найдите основания трапеции, если AH = 20 и DH= 8 .

ВверхВниз   Решение


Из четырёх палочек сложен контур параллелограмма. Обязательно ли из них можно сложить контур треугольника (одна из сторон треугольника складывается из двух палочек)?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 173]      



Задача 54263

Темы:   [ Ромбы. Признаки и свойства ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3
Классы: 8,9

В прямоугольный треугольник с углом 60° вписан ромб со стороной, равной 6, причём угол в 60° у них общий, а все вершины ромба лежат на сторонах треугольника. Найдите стороны треугольника.

Прислать комментарий     Решение

Задача 64823

Темы:   [ Ромбы. Признаки и свойства ]
[ Неравенство треугольника (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10

Из четырёх палочек сложен контур параллелограмма. Обязательно ли из них можно сложить контур треугольника (одна из сторон треугольника складывается из двух палочек)?

Прислать комментарий     Решение

Задача 65946

Темы:   [ Ромбы. Признаки и свойства ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3
Классы: 8,9

Можно ли произвольный ромб разрезать не более, чем на две части так, чтобы из этих частей сложить прямоугольник?

Прислать комментарий     Решение

Задача 79485

Темы:   [ Ромбы. Признаки и свойства ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3
Классы: 8

На листе прозрачной бумаги нарисован четырёхугольник. Укажите способ, как сложить этот лист (возможно, в несколько раз), чтобы определить, является ли исходный четырёхугольник ромбом.
Прислать комментарий     Решение


Задача 110830

Темы:   [ Ромбы. Признаки и свойства ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Сторона ромба ABCD равна 6. Расстояние между центрами окружностей, описанных около треугольников ABC и BCD , равно 8. Найдите радиусы этих окружностей.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 173]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .