|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Из стакана молока три ложки содержимого переливают в стакан с чаем и небрежно помешивают. Затем зачёрпывают три ложки полученной смеси и переливают их обратно в стакан с молоком. Чего теперь больше: чая в стакане с молоком или молока в стакане с чаем? Найдите все значения а, для которых выражения
а + Докажите, что при x≠πn (n– целое) sin x и cos x рациональны тогда и только тогда, когда число tg Высота AA', медиана BB' и биссектриса CC' треугольника ABC пересекаются в точке K. Известно, что A'K = B'K. а) В треугольнике ABC, длины сторон которого рациональные числа, проведена высота BB1. Докажите, что длины отрезков AB1 и CB1 — рациональные числа. б) Длины сторон и диагоналей выпуклого четырехугольника — рациональные числа. Докажите, что диагонали разрезают его на четыре треугольника, длины сторон которых — рациональные числа. а) Определение (смотри в справочнике)
функций gk,l(x) не позволяет вычислять их значения при x = 1. Но, поскольку функции gk,l(x) являются многочленами, они определены и при x = 1. Докажите равенство б) Какие свойства биномиальных коэффициентов получаются, если в свойства б) – г) из задачи 61522 подставить значение x = 1? |
Страница: 1 2 >> [Всего задач: 6]
Вычислите функции gk,l(x) при 0 ≤ k + l ≤ 4 и покажите, что все они являются многочленами.
Докажите следующие свойства функций gk,l(x)
(определения функций gk,l(x)
смотри здесь):
а) Определение (смотри в справочнике)
функций gk,l(x) не позволяет вычислять их значения при x = 1. Но, поскольку функции gk,l(x) являются многочленами, они определены и при x = 1. Докажите равенство б) Какие свойства биномиальных коэффициентов получаются, если в свойства б) – г) из задачи 61522 подставить значение x = 1?
Найдите сумму Sl(x) = g0,l(x) – g1,l–1(x) + g2,l–2(x) – ... + (–1)lgl,0(x).
Докажите, что при любых k и l многочлен
gk,l(x) является возвратным, то есть
Страница: 1 2 >> [Всего задач: 6] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|