|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На доске записаны числа 1, 21, 2², 2³, 24, 25. Разрешается стереть любые два числа и вместо них записать их разность – неотрицательное число. Напишите в строчку первые 10 простых чисел. Как вычеркнуть 6 цифр, чтобы получилось наибольшее возможное число? Капитан нашёл Остров Сокровищ, имеющий форму круга. На его берегу растут шесть пальм. Капитан знает, что клад закопан в середине отрезка, соединяющего ортоцентры треугольников ABC и DEF, где A, B, C, D, E, F – эти шесть пальм, но он не знает, какой буквой обозначена каждая пальма. Докажите, что тем не менее он может найти клад с первой же попытки. Каждую клетку квадратной таблицы 2×2 можно покрасить в чёрный или белый цвет. Сколько существует различных раскрасок этой таблицы? Найдите недостающие числа: а) Внутри окружности находится некоторая точка A. Через A провели две перпендикулярные прямые, которые пересекли окружность в четырёх точках. б) Внутри окружности находится правильный 2n-угольник (n > 2), его центр A не обязательно совпадает с центром окружности. Лучи, выпущенные из A в вершины 2n-угольника, высекают 2n точек на окружности. 2n-угольник повернули так, что его центр остался на месте. Теперь лучи высекают 2n новых точек. Докажите, что их центр масс совпадает с центром масс старых 2n точек. Докажите, что Найдите наибольшее шестизначное число, у которого каждая цифра, начиная с третьей, равна сумме двух предыдущих цифр. Одно трехзначное число состоит из различных цифр, следующих в порядке возрастания, а в его названии все слова начинаются с одной и той же буквы. Другое трехзначное число, наоборот, состоит из одинаковых цифр, но в его названии все слова начинаются с разных букв. Какие это числа? Определение. Последовательность чисел a0, a1,...,an,..., которая удовлетворяет с заданными p и q соотношению
называется линейной рекуррентной (возвратной) последовательностью второго порядка. Уравнение
называется характеристическим уравнением последовательности (a n). Докажите, что если числа a0, a1 фиксированы, то все остальные члены последовательности {an} определяются однозначно. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 703]
Sn = a1 + a2 +...+ an
с последовательностью {bn}?
называется линейной рекуррентной (возвратной) последовательностью второго порядка. Уравнение
называется характеристическим уравнением последовательности (a n). Докажите, что если числа a0, a1 фиксированы, то все остальные члены последовательности {an} определяются однозначно.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 703] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|