ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 676]      



Задача 103760

Темы:   [ Последовательности (прочее) ]
[ Симметрия и инволютивные преобразования ]
[ Ребусы ]
Сложность: 2+
Классы: 6

Инопланетянин со звезды Тау Кита, прилетев на Землю в понедельник, воскликнул: ''А!''. Во вторник он воскликнул: ''АУ!'', в среду — ''АУУА!'', в четверг — ''АУУАУААУ!''. Что он воскликнет в субботу?

Прислать комментарий     Решение


Задача 107673

Темы:   [ Арифметическая прогрессия ]
[ Геометрия на клетчатой бумаге ]
[ Перегруппировка площадей ]
Сложность: 2+
Классы: 6,7,8

На клетчатой бумаге нарисована фигура (см. рис. 1): в верхнем ряду — одна клеточка, во втором сверху — три клеточки, в следующем ряду — 5 клеточек, и т.д., всего рядов — n. Докажите, что общее число клеточек есть квадрат некоторого числа.
                                     _
                                   _|_|_
                                 _|_|_|_|_
                               _|_|_|_|_|_|_
                              |_|_|_|_|_|_|_|
                           .....................
                         _ _ _ _           _ _ _ _
                        |_|_|_|_| ....... |_|_|_|_|
Рис. 1
Прислать комментарий     Решение


Задача 116595

Тема:   [ Арифметическая прогрессия ]
Сложность: 2+
Классы: 8,9,10

Бесконечная возрастающая арифметическая прогрессия такова, что произведение каждых двух различных её членов – также член этой прогрессии. Докажите, что все её члены – целые числа.

Прислать комментарий     Решение

Задача 35041

Тема:   [ Последовательности (прочее) ]
Сложность: 2+
Классы: 7,8,9

Можно ли выписать в строчку 2000 чисел так, чтобы сумма любых трех последовательных чисел была отрицательной, а сумма всех чисел - положительной?
Прислать комментарий     Решение


Задача 35281

Тема:   [ Геометрическая прогрессия ]
Сложность: 2+
Классы: 9,10

Найти сумму а) 1+11+111+...+111...1, где последнее число содержит n единиц; б)аналогичная задача, когда вместо единиц стоят пятерки.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 676]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .