ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Прямая касается окружности с центром O в точке A. Точка C на этой прямой и точка D на окружности расположены по одну сторону от прямой OA. Докажите, что угол CAD вдвое меньше угла AOD.

Вниз   Решение


Дана четырёхугольная пирамида SABCD , основание которой – параллелограмм ABCD . Точки M , N и K лежат на ребрах AS , BS и CS соответственно, причём AM:MS = 1:2 , BN:NS = 1:3 , CK:KS = 1:1 . Постройте сечение пирамиды плоскостью MNK . В каком отношении эта плоскость делит ребро SD ?

ВверхВниз   Решение


Автор: Фольклор

Верно ли, что если  b > a + c > 0,  то квадратное уравнение  ax² + bx + c = 0   имеет два корня?

ВверхВниз   Решение


Пусть AP и BQ – высоты данного остроугольного треугольника ABC. Постройте циркулем и линейкой на стороне AB точку M так, чтобы
AQM = ∠BPM.

ВверхВниз   Решение


Докажите, что в прямоугольном треугольнике каждый катет меньше гипотенузы.

ВверхВниз   Решение


Найти сумму 1 + 2002 + 20022 + ... + 2002n.

ВверхВниз   Решение


Пусть  (P(x), Q(x)) = D(x).
Докажите, что существуют такие многочлены U(x) и V(x), что  degU (x) < deg Q(x),  deg V(x) < deg P(x)  и   P(x)U(x) + Q(x)V(x) = D(x).

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]      



Задача 64409

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Производная и кратные корни ]
Сложность: 4-
Классы: 10,11

Докажите, что многочлен P(x) делится на свою производную тогда и только тогда, когда P(x) имеет вид  P(x) = an(x – x0)n.

Прислать комментарий     Решение

Задача 60990

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Алгоритм Евклида ]
Сложность: 4
Классы: 8,9,10,11

Пусть  (P(x), Q(x)) = D(x).
Докажите, что существуют такие многочлены U(x) и V(x), что  degU (x) < deg Q(x),  deg V(x) < deg P(x)  и   P(x)U(x) + Q(x)V(x) = D(x).

Прислать комментарий     Решение

Задача 61029

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 4
Классы: 10,11

Докажите, что многочлен  P(x) = (xn+1 – 1)(xn+2 – 1)...(xn+m – 1)  делится на  Q(x) = (x – 1)(x2 – 1)...(xm – 1).

Прислать комментарий     Решение

Задача 61278

Тема:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
Сложность: 4
Классы: 9,10,11

Докажите, что если уравнения  x³ + px + q = 0,  x³ + p'x + q' = 0  имеют общий корень, то  (pq' – qp')(p – p')² = (q – q')³.

Прислать комментарий     Решение

Задача 77932

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Свойства коэффициентов многочлена ]
[ Разложение на множители ]
Сложность: 4
Классы: 8,9,10

При делении многочлена  x1951 – 1  на  x4 + x³ + 2x² + x + 1  получается частное и остаток. Найти в частном коэффициент при x14.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .