|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи а) В городе Мехико для ограничения транспортного потока для каждой частной автомашины устанавливаются два дня недели, в которые она не может выезжать на улицы города. Семье требуется каждый день иметь в распоряжении не менее десяти машин. Каким наименьшим количеством машин может обойтись семья, если её члены могут сами выбирать запрещенные дни для своих автомобилей? б) В Мехико для каждой частной автомашины устанавливается один день в неделю, в который она не может выезжать на улицы города. Состоятельная семья из десяти человек подкупила полицию, и для каждой машины они называют два дня, один из которых полиция выбирает в качестве невыездного дня. Какое наименьшее количество машин нужно купить семье, чтобы каждый день каждый член семьи мог самостоятельно ездить, если утверждение невыездных дней для автомобилей идёт последовательно? Для каждого k от 1 до 6 найдите наименьшее натуральное число, которое имеет ровно k различных делителей. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 51]
Пусть p и q – различные простые числа. Сколько делителей у числа
а) 2·3·5·7·11; б) 22·33·55·77·1111 ?
Доказать: число делителей n не превосходит 2
Найдите все натуральные числа, делящиеся на 30 и имеющие ровно 30 различных делителей.
Для каждого k от 1 до 6 найдите наименьшее натуральное число, которое имеет ровно k различных делителей.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 51] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|