|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Рассмотрим шахматную доску n×n. Требуется провести ладью из левого нижнего угла в правый верхний. Двигаться можно только вверх и вправо, не заходя при этом на клетки главной диагонали и ниже нее. (Ладья оказывается на главной диагонали только в начальный и в конечный моменты времени.) Сколько у ладьи существует таких маршрутов? В треугольник ABC со сторонами AB = 5, BC = 7, CA = 10 вписана окружность. Прямая, пересекающая стороны AB и BC в точках M и K, касается этой окружности. Найдите периметр треугольника MBK. а) Пусть P — точка Брокара треугольника ABC. Угол б) Докажите, что точки Брокара треугольника ABC изогонально сопряжены. в) Касательная к описанной окружности треугольника ABC в точке C и прямая, проходящая через точку B параллельно AC, пересекаются в точке A1. Докажите, что угол Брокара треугольника ABC равен углу A1AC. Точки A и B лежат на диаметре данной окружности. Проведите через них две равные хорды с общим концом. Внутри выпуклого четырехугольника найдите точку, сумма расстояний от которой до вершин была бы наименьшей. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 165]
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 165] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|