ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Продолжения сторон AB и CD выпуклого четырёхугольника ABCD пересекаются в точке K. Известно, что  AD = BC.  Пусть M и N – середины сторон AB и CD. Докажите, что треугольник MNK тупоугольный.

Вниз   Решение


За круглым столом сидят несколько гостей. Некоторые из них знакомы между собой; знакомство взаимно. Все знакомые каждого гостя (считая его самого) сидят вокруг стола через равные промежутки. (Для другого человека эти промежутки могут быть другими.) Известно, что каждые двое имеют хотя бы одного общего знакомого. Докажите, что все гости знакомы друг с другом.

ВверхВниз   Решение


Найти сумму а) 1+11+111+...+111...1, где последнее число содержит n единиц; б)аналогичная задача, когда вместо единиц стоят пятерки.

ВверхВниз   Решение


Радиусы двух окружностей равны R и r, а расстояние между их центрами равно d. Докажите, что эти окружности пересекаются тогда и только тогда, когда  | R - r| < d < R + r.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 841]      



Задача 57299

Тема:   [ Геометрические неравенства (прочее) ]
Сложность: 2-
Классы: 8,9

Докажите, что  SABC $ \leq$ AB . BC/2.
Прислать комментарий     Решение


Задача 57300

Тема:   [ Геометрические неравенства (прочее) ]
Сложность: 2-
Классы: 8,9

Докажите, что  SABCD $ \leq$ (AB . BC + AD . DC)/2.
Прислать комментарий     Решение


Задача 57301

Тема:   [ Геометрические неравенства (прочее) ]
Сложность: 2-
Классы: 8,9

Докажите, что  $ \angle$ABC > 90o тогда и только тогда, когда точка B лежит внутри окружности с диаметром AC.
Прислать комментарий     Решение


Задача 57302

Тема:   [ Геометрические неравенства (прочее) ]
Сложность: 2-
Классы: 8,9

Радиусы двух окружностей равны R и r, а расстояние между их центрами равно d. Докажите, что эти окружности пересекаются тогда и только тогда, когда  | R - r| < d < R + r.
Прислать комментарий     Решение


Задача 88188

Темы:   [ Неравенство треугольника (прочее) ]
[ Площадь треугольника (прочее) ]
[ Задачи-шутки ]
Сложность: 2-
Классы: 5,6,7,8

Чему равна площадь треугольника со сторонами 18, 17, 35?
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 841]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .