|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Доказать, что если в треугольнике ABC со стороной BC = 1 радиус ra вневписанной окружности вдвое больше радиуса r вписанной окружности, то площадь треугольника численно равна 2r. Точки M и N расположены на стороне AC треугольника ABC, а точки K и L – на стороне AB, причём AM : MN : NC = 1 : 3 : 1 и AK = KL = LB. Известно, что площадь треугольника ABC равна 1. Найдите площадь четырёхугольника KLNM. Даны натуральные числа M и N, большие десяти, состоящие из одинакового количества цифр и такие, что M = 3N. Чтобы получить число M, надо в числе N к одной из цифр прибавить 2, а к каждой из остальных цифр прибавить по нечётной цифре. Какой цифрой могло оканчиваться число N? Выразите площадь треугольника ABC через длину стороны BC и величины углов B и C. В наборе –5, –4, –3, –2, –1, 0, 1, 2, 3, 4, 5 замените одно число двумя другими целыми числами так, чтобы дисперсия набора и его среднее не изменились. а) Найдите ГМТ, равноудаленных от двух параллельных прямых. б) Найдите ГМТ, равноудаленных от двух пересекающихся прямых. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 497]
б) Найдите ГМТ, равноудаленных от двух пересекающихся прямых.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 497] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|