ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Обозначим через S сумму следующего ряда:

S = 1 - 1 + 1 - 1 + 1 -... (12.1)

Преобразовав равенство (12.1 ), можно получить уравнение, из которого находится S:

S = 1 - (1 - 1 + 1 - 1 +...) = 1 - S $\displaystyle \Rightarrow$ S = $\displaystyle {\textstyle\frac{1}{2}}$.

Сумму S можно также найти объединяя слагаемые ряда (12.1 ) в пары:

S = (1 - 1) + (1 - 1) +...= 0 + 0 +...= 0;
S = 1 - (1 - 1) - (1 - 1) -...= 1 - 0 - 0 -...= 1.

Наконец, переставив местами соседние слагаемые, получаем еще одно значение S:

S = - 1 + 1 - 1 + 1 - 1 +...= - 1 + (1 - 1) + (1 - 1) +...= - 1.

Итак, действуя четырьмя разными способами, мы нашли четыре значения суммы S:

S = $\displaystyle {\textstyle\frac{1}{2}}$ = 0 = 1 = - 1.

Какое же значение имеет сумма S в действительности?

Вниз   Решение


У Аси и Васи есть три монеты. На разных сторонах одной монеты изображены ножницы и бумага, на сторонах другой монеты – камень и ножницы, на сторонах третьей – бумага и камень. Ножницы побеждают бумагу, бумага побеждает камень и камень побеждает ножницы. Сначала Ася выбирает себе монетку, потом Вася, потом они бросают свои монетки и смотрят, кто выиграл (если выпало одно и то же, то – ничья). Так они делают много раз. Есть ли возможность у Васи выбирать монету так, чтобы вероятность его выигрыша была выше, чем у Аси?

ВверхВниз   Решение


Хорда AB разбивает окружность S на две дуги. Окружность S1 касается хорды AB в точке M и одной из дуг в точке N. Докажите, что:
а) прямая MN проходит через середину P второй дуги;
б) длина касательной PQ к окружности S1 равна PA.

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 16]      



Задача 56699

Тема:   [ Окружности, вписанные в сегмент ]
Сложность: 3
Классы: 8,9

Хорда AB разбивает окружность S на две дуги. Окружность S1 касается хорды AB в точке M и одной из дуг в точке N. Докажите, что:
а) прямая MN проходит через середину P второй дуги;
б) длина касательной PQ к окружности S1 равна PA.
Прислать комментарий     Решение


Задача 56701

Темы:   [ Окружности, вписанные в сегмент ]
[ Касательные прямые и касающиеся окружности (прочее) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Радикальная ось ]
Сложность: 4-
Классы: 8,9

Две окружности, вписанные в сегмент AB данной окружности, пересекаются в точках M и N. Докажите, что прямая MN проходит через середину C дополнительной дуги данного сегмента AB.

Прислать комментарий     Решение

Задача 53000

Темы:   [ Окружности, вписанные в сегмент ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4-
Классы: 8,9

В прямоугольном секторе AOB проведена хорда AB и в образовавшийся сегмент вписан квадрат. Найдите отношение стороны квадрата к радиусу окружности, которая касается хорды AB, дуги AB и стороны квадрата, перпендикулярной хорде AB.

Прислать комментарий     Решение

Задача 56700

Тема:   [ Окружности, вписанные в сегмент ]
Сложность: 4
Классы: 8,9

Из точки D окружности S опущен перпендикуляр DC на диаметр AB. Окружность S1 касается отрезка CA в точке E, а также отрезка CD и окружности S. Докажите, что DE — биссектриса треугольника ADC.
Прислать комментарий     Решение


Задача 64924

Темы:   [ Окружности, вписанные в сегмент ]
[ Касательные прямые и касающиеся окружности (прочее) ]
[ Вспомогательные подобные треугольники ]
[ Вписанные четырехугольники (прочее) ]
[ Проективная геометрия (прочее) ]
Сложность: 4+
Классы: 10,11

Автор: Нилов Ф.

В сегмент, ограниченный хордой и дугой AB окружности, вписана окружность ω с центром I. Обозначим середину указанной дуги AB через M, а середину дополнительной дуги через N. Из точки N проведены две прямые, касающиеся ω в точках C и D. Противоположные стороны AD и BC четырёхугольника ABCD пересекаются в точке Y, а его диагонали пересекаются в точке X. Докажите, что точки X, Y, I и M лежат на одной прямой.

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .