|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Петя утверждает, что он сумел согнуть бумажный равносторонний треугольник так, что получился четырёхугольник, причём всюду трёхслойный. Дана прямая l и точки A и B, лежащие по одну сторону от нее. Постройте такую точку X прямой l, что AX + XB = a, где a — данная величина. Докажите, что если числа N и 5N имеют одинаковую сумму цифр, то N делится на 9. Известно, что разность кубов корней квадратного уравнения ax² + bx + c = 0 равна 2011. Сколько корней имеет уравнение ax² + 2bx + 4c = 0? Две окружности пересекаются в точках A и B. Точка X лежит на прямой AB, но не на отрезке AB. Докажите, что длины всех касательных, проведенных из точки X к окружностям, равны. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 9776]
а) радиус вписанной окружности треугольника равен (a + b - c)/2; б) радиус окружности, касающейся гипотенузы и продолжений катетов, равен (a + b + c)/2.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 9776] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|