|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Приведите пример такого квадратного трехчлена $P(x)$, что при любом $x$ справедливо равенство $P(x)+P(x+1)+\dots + P(x+10)=x^2$. Найти на плоскости точку, сумма расстояний от которой до четырёх заданных точек минимальна. n отрезков длины 1 пересекаются в одной точке. Доказать, что хотя бы одна сторона 2n-угольника, образованного их концами, не меньше стороны правильного 2n-угольника, вписанного в окружность диаметра 1. Докажите, что середины сторон правильного многоугольника образуют правильный многоугольник.
|
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 182]
Докажите, что сумма расстояний от любой точки, расположенной внутри правильного n-угольника, до его сторон не зависит от выбора точки.
Докажите, что середины сторон правильного многоугольника образуют правильный многоугольник.
Докажите, что выпуклый n-угольник является правильным тогда и только тогда, когда он переходит в себя при повороте на угол 360°/n вокруг некоторой точки.
Отмечены вершины и середины сторон правильного десятиугольника (то есть всего отмечено 20 точек).
Дан правильный 4n-угольник A1A2...A4n площади S, причём n > 1. Найдите площадь четырёхугольника A1AnAn +1An+2.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 182] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|