ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

После обеда на прозрачной квадратной скатерти остались тёмные пятна общей площади S. Оказалось, что если сложить скатерть пополам вдоль любой из двух линий, соединяющих середины противоположных её сторон, или же вдоль одной из двух её диагоналей, то общая видимая площадь пятен будет равна S1. Если же сложить скатерть пополам вдоль другой её диагонали, то общая видимая площадь пятен останется равна S. Какое наименьшее значение может принимать величина  S1 : S?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 182]      



Задача 55579

Темы:   [ Правильные многоугольники ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3
Классы: 8,9

Докажите, что для любого натурального n существует выпуклый многоугольник, имеющий ровно n осей симметрии.

Прислать комментарий     Решение

Задача 57066

Темы:   [ Правильные многоугольники ]
[ Четность и нечетность ]
[ Поворот помогает решить задачу ]
Сложность: 3
Классы: 9

Число сторон многоугольника A1...An нечётно. Докажите, что:
  а) если этот многоугольник вписанный и все его углы равны, то он правильный;
  б) если этот многоугольник описанный и все его стороны равны, то он правильный.

Прислать комментарий     Решение

Задача 57070

Тема:   [ Правильные многоугольники ]
Сложность: 3
Классы: 9

Существует ли правильный многоугольник, длина одной диагонали которого равна сумме длин двух других диагоналей?

Прислать комментарий     Решение

Задача 57079

Темы:   [ Правильные многоугольники ]
[ Неравенства с векторами ]
[ Центр масс ]
Сложность: 3
Классы: 9

Точка A лежит внутри правильного десятиугольника X1...X10, а точка B — вне его. Пусть  a = + ... +   и  b = + ... + .
Может ли оказаться, что  |a| > |b| ?

Прислать комментарий     Решение

Задача 57080

Темы:   [ Правильные многоугольники ]
[ Векторы помогают решить задачу ]
[ Момент инерции ]
Сложность: 3
Классы: 9

Правильный многоугольник  A1...An вписан в окружность радиуса R с центром O, X — произвольная точка.
Докажите, что   A1X² + ... + AnX² = n(R² + d²),  где  d = OX.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 182]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .