ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

20 футбольных команд проводят первенство. В первый день все команды сыграли по одной игре. Во второй также все команды сыграли по одной игре.
Докажите, что после второго дня можно указать такие 10 команд, что никакие две из них не играли друг с другом.

Вниз   Решение


С помощью циркуля и линейки восстановите выпуклый четырёхугольник по четырём точкам – проекциям точки пересечения его диагоналей на стороны.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 43]      



Задача 54629

Темы:   [ Четырехугольники (построения) ]
[ Метод ГМТ ]
Сложность: 4-
Классы: 8,9

С помощью циркуля и линейки восстановите выпуклый четырёхугольник по четырём точкам – проекциям точки пересечения его диагоналей на стороны.

Прислать комментарий     Решение

Задача 64388

Темы:   [ Четырехугольники (построения) ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Симметрия и построения ]
[ Ортоцентр и ортотреугольник ]
Сложность: 4-
Классы: 8,9

Диагонали выпуклого четырёхугольника ABCD пересекаются в точке L. В треугольнике ABL отметили точку пересечения высот H, а в треугольниках BCL, CDL и DAL – центры O1, O2 и O3 описанных окружностей. Затем весь рисунок, кроме точек H, O1, O2, O3, стерли. Восстановите его.

Прислать комментарий     Решение

Задача 66243

Темы:   [ Четырехугольники (построения) ]
[ Вписанные и описанные окружности ]
[ Гомотетия: построения и геометрические места точек ]
Сложность: 4-
Классы: 9,10

Выпуклый четырёхугольник разрезан диагоналями на четыре треугольника. Восстановите четырёхугольник по центрам описанных окружностей двух соседних треугольников и центрам вписанных окружностей двух противоположных друг другу треугольников.

Прислать комментарий     Решение

Задача 54625

Темы:   [ Четырехугольники (построения) ]
[ Подобные треугольники и гомотетия (построения) ]
Сложность: 4
Классы: 8,9

С помощью циркуля и линейки постройте трапецию по отношению её оснований, двум углам при одном из этих оснований и высоте.

Прислать комментарий     Решение


Задача 57242

Тема:   [ Четырехугольники (построения) ]
Сложность: 4
Классы: 8,9

Через вершину A выпуклого четырехугольника ABCD проведите прямую, делящую его на две равновеликие части.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 43]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .