|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи а) Внутри окружности находится некоторая точка A. Через A провели две перпендикулярные прямые, которые пересекли окружность в четырёх точках. б) Внутри окружности находится правильный 2n-угольник (n > 2), его центр A не обязательно совпадает с центром окружности. Лучи, выпущенные из A в вершины 2n-угольника, высекают 2n точек на окружности. 2n-угольник повернули так, что его центр остался на месте. Теперь лучи высекают 2n новых точек. Докажите, что их центр масс совпадает с центром масс старых 2n точек. Пусть ABCD — пространственный четырёхугольник, точки K1 и K2 делят соответственно стороны AB и DC в отношении Разрежьте произвольный треугольник на 3 части и сложите из них прямоугольник. Каждая из сторон выпуклого шестиугольника имеет длину больше 1. Всегда ли в нем найдется диагональ длины больше 2? Делится ли на 1999 сумма чисел 1 + 2 + 3 +...+ 1999? На сторонах AB, BC, CD, DA квадрата ABCD взяты соответственно точки N, K, L, M, делящие эти стороны в одном и том же отношении (при обходе по часовой стрелке). Докажите, что KLMN – также квадрат. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 144]
Шестиугольник ABCDEF – правильный, K и M – середины отрезков BD и EF. Докажите, что треугольник AMK – правильный.
На сторонах AB, BC, CD, DA квадрата ABCD взяты соответственно точки N, K, L, M, делящие эти стороны в одном и том же отношении (при обходе по часовой стрелке). Докажите, что KLMN – также квадрат.
В квадрате ABCD точки K и M принадлежат сторонам BC и CD соответственно, причём AM – биссектриса угла KAD.
Пусть M и N – середины сторон CD и DE правильного шестиугольника ABCDEF. Найдите угол между прямыми AM и BN.
С помощью циркуля и линейки через точку внутри данного круга проведите хорду, отсекающую от окружности дугу заданной угловой величины.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 144] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|