ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Иногда, вычитая дроби, можно вычитать их числители и складывать знаменатели. Например:  
Для каких дробей это возможно?

Вниз   Решение


Найдите какие-нибудь четыре попарно различных натуральных числа a, b, c, d, для которых числа  a² + 2cd + b²  и  c² + 2ab + d²  являются полными квадратами.

ВверхВниз   Решение


Автор: Кноп К.А.

Мороженое стоит 2000 рублей. У Пети имеется  4005 – 399²·(400³ + 2·400² + 3·400 + 4)  рублей. Достаточно ли у Пети денег на мороженое?

ВверхВниз   Решение


В треугольник со сторонами 6, 10 и 12 вписана окружность. К окружности проведена касательная, пересекающая две бóльшие стороны.
Найдите периметр отсечённого треугольника.

ВверхВниз   Решение


К окружности радиуса 7 проведены две касательные из одной точки, удалённой от центра на расстояние, равное 25.
Найдите расстояние между точками касания.

ВверхВниз   Решение


Окружность касается большего катета прямоугольного треугольника, проходит через вершину противолежащего острого угла и имеет центр на гипотенузе треугольника. Найдите радиус окружности, если катеты равны 5 и 12.

ВверхВниз   Решение


Расстояние между центрами непересекающихся окружностей равно a . Докажите, что точки пересечения общих внешних касательных с общими внутренними касательными лежат на одной окружности и найдите её радиус.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 772]      



Задача 52433

Тема:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 3
Классы: 8,9

Из внешней точки проведены к окружности секущая, длина которой равна 12, и касательная, равная 2/3 внутреннего отрезка секущей.
Найдите длину касательной.

Прислать комментарий     Решение

Задача 52712

Темы:   [ Две касательные, проведенные из одной точки ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3
Классы: 8,9

В треугольник со сторонами 6, 10 и 12 вписана окружность. К окружности проведена касательная, пересекающая две бóльшие стороны.
Найдите периметр отсечённого треугольника.

Прислать комментарий     Решение

Задача 52723

Темы:   [ Общая касательная к двум окружностям ]
[ Диаметр, основные свойства ]
Сложность: 3
Классы: 8,9

Расстояние между центрами непересекающихся окружностей равно a . Докажите, что точки пересечения общих внешних касательных с общими внутренними касательными лежат на одной окружности и найдите её радиус.
Прислать комментарий     Решение


Задача 52758

Темы:   [ Признаки и свойства касательной ]
[ Теорема Пифагора (прямая и обратная) ]
[ Вспомогательные подобные треугольники ]
Сложность: 3
Классы: 8,9

Окружность касается большего катета прямоугольного треугольника, проходит через вершину противолежащего острого угла и имеет центр на гипотенузе треугольника. Найдите радиус окружности, если катеты равны 5 и 12.

Прислать комментарий     Решение

Задача 52886

Темы:   [ Две касательные, проведенные из одной точки ]
[ Теорема Пифагора (прямая и обратная) ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3
Классы: 8,9

К окружности радиуса 7 проведены две касательные из одной точки, удалённой от центра на расстояние, равное 25.
Найдите расстояние между точками касания.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 772]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .