ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Стороны треугольника относятся как  5 : 4 : 3.  Найдите отношения отрезков сторон, на которые они делятся точками касания с вписанной окружностью.

   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 1317]      



Задача 55263

Тема:   [ Теорема косинусов ]
Сложность: 3
Классы: 8,9

В треугольнике ABC известно, что AC = 13, AB = 14, BC = 15. На стороне BC взята точка M, причём CM : MB = 1 : 2. Найдите AM.

Прислать комментарий     Решение


Задача 55342

Темы:   [ Теорема косинусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3
Классы: 8,9

Площадь треугольника ABC равна S, $ \angle$BAC = $ \alpha$, AC = b. Найдите BC.

Прислать комментарий     Решение


Задача 55345

Темы:   [ Теорема синусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3
Классы: 8,9

Площадь треугольника ABC равна S, $ \angle$BAC = $ \alpha$, $ \angle$BCA = $ \gamma$. Найдите AB.

Прислать комментарий     Решение


Задача 52658

Темы:   [ Вписанная, описанная и вневписанная окружности; их радиусы ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Стороны треугольника относятся как  5 : 4 : 3.  Найдите отношения отрезков сторон, на которые они делятся точками касания с вписанной окружностью.

Прислать комментарий     Решение

Задача 52694

Темы:   [ Теорема косинусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3
Классы: 8,9

Окружность, вписанная в треугольник, точкой касания делит одну из сторон на отрезки, равные 3 и 4, а противолежащий этой стороне угол равен 120o . Найдите площадь треугольника.
Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 1317]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .