ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Моторная лодка в 9 часов отправилась вверх по течению реки, и в момент её отправления с лодки был брошен в реку мяч. В 9:15 лодка повернула и поплыла по течению. В котором часу лодка догонит мяч, если известно, что её собственная скорость оставалась неизменной?

Вниз   Решение


Пусть $AL$ — биссектриса треугольника $ABC$, точка $D$ — ее середина, $E$ — проекция $D$ на $AB$. Известно, что $AC = 3 AE$. Докажите, что треугольник $CEL$ равнобедренный.

ВверхВниз   Решение


Найдите диагональ прямоугольника со сторонами 5 и 12.

ВверхВниз   Решение


На окружности взяты точки A, B, C и D. Прямые AB и CD пересекаются в точке M. Докажите, что  AC . AD/AM = BC . BD/BM.

ВверхВниз   Решение


Дан лист клетчатой бумаги. Каждый узел сетки обозначается некоторой буквой. Каким наименьшим числом различных букв нужно обозначить эти узлы, чтобы на отрезке (идущем по сторонам клеток - прим.ред.), соединяющем два узла, обозначенных одинаковыми буквами, находился, по крайней мере, один узел, обозначенный одной из других букв?

ВверхВниз   Решение


В древнем шифре, известном под названием "Сцитала", использовалась полоска папируса, которая наматывалась на круглый стержень виток к витку без просветов и нахлестов. Далее, при горизонтальном положении стержня, на папирус построчно записывался текст сообщения. После этого полоска папируса с записанным на ней текстом посылалась адресату, имеющему точно такой же стержень, что позволяло ему прочитать сообщение. В наш адрес поступило сообщение, зашифрованное с помощью шифра "Сцитала". Однако его автор, заботясь о том, чтобы строчки были ровные, во время письма проводил горизонтальные линии, которые остались на полоске в виде черточек между буквами. Угол наклона этих черточек к краю ленты равен α, ширина полоски равна d, а ширина каждой строки равна h. Укажите, как, пользуясь имеющимися данными, прочитать текст.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 190]      



Задача 109296

Темы:   [ Конус ]
[ Площадь сечения ]
Сложность: 2
Классы: 10,11

Высота конуса равна h , а образующая равна l . Найдите радиус основания и площадь осевого сечения.
Прислать комментарий     Решение


Задача 109298

Тема:   [ Конус ]
Сложность: 2
Классы: 10,11

Найдите угол при вершине осевого сечения конуса, если образующая конуса в два раза больше его высоты.
Прислать комментарий     Решение


Задача 87461

Темы:   [ Тела вращения ]
[ Объем круглых тел ]
Сложность: 3
Классы: 10,11


Основания трапеции равны 8 и 2. Углы, прилежащие к большему основанию, равны по 45o. Найдите объем тела, образованного вращением трапеции вокруг большего основания.

Прислать комментарий     Решение


Задача 35766

Темы:   [ Цилиндр ]
[ Взаимоотношения между сторонами и углами треугольников (прочее) ]
[ Криптография ]
Сложность: 3
Классы: 9,10

В древнем шифре, известном под названием "Сцитала", использовалась полоска папируса, которая наматывалась на круглый стержень виток к витку без просветов и нахлестов. Далее, при горизонтальном положении стержня, на папирус построчно записывался текст сообщения. После этого полоска папируса с записанным на ней текстом посылалась адресату, имеющему точно такой же стержень, что позволяло ему прочитать сообщение. В наш адрес поступило сообщение, зашифрованное с помощью шифра "Сцитала". Однако его автор, заботясь о том, чтобы строчки были ровные, во время письма проводил горизонтальные линии, которые остались на полоске в виде черточек между буквами. Угол наклона этих черточек к краю ленты равен α, ширина полоски равна d, а ширина каждой строки равна h. Укажите, как, пользуясь имеющимися данными, прочитать текст.

Прислать комментарий     Решение

Задача 87130

Темы:   [ Конус ]
[ Углы между прямыми и плоскостями ]
Сложность: 3
Классы: 10,11

Площадь сечения конуса плоскостью, проходящей через вершину конуса под углом 30o к его оси, равна площади осевого сечения. Найдите угол при вершине осевого сечения конуса.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 190]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .