|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На какое максимальное число кусков можно разделить круглый блинчик при помощи трех прямолинейных разрезов? Даны 7 различных цифр. Доказать, что для любого натурального числа n найдётся пара данных цифр, сумма которых оканчивается той же цифрой, что и число. На сколько частей делят плоскость n прямых общего положения, то есть таких, что никакие две не параллельны и никакие три не проходят через одну точку? Две окружности касаются в точке K. Прямая, проходящая через точку K, пересекает эти окружности в точках A и B. Докажите, что касательные к окружностям, проведенные через точки A и B, параллельны.
В выпуклом пятиугольнике ABCDE сторона BC параллельна диагонали AD, CD || BE, DE || AC и AE || BD. Докажите, что AB || CE. Можно ли расставить на футбольном поле четырёх футболистов так, чтобы попарные расстояния между ними равнялись 1, 2, 3, 4, 5 и 6 метров? В мешке лежат шарики двух разных цветов: черного и белого. Какое наименьшее число шариков нужно вынуть из мешка вслепую так, чтобы среди них заведомо оказались два шарика одного цвета? Существуют ли несколько невыпуклых многоугольников, из которых можно составить выпуклый? |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 207]
Внутри выпуклого многоугольника расположены две точки.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 207] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|