ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

На какое максимальное число кусков можно разделить круглый блинчик при помощи трех прямолинейных разрезов?

Вниз   Решение


Даны 7 различных цифр. Доказать, что для любого натурального числа n найдётся пара данных цифр, сумма которых оканчивается той же цифрой, что и число.

ВверхВниз   Решение


На сколько частей делят плоскость n прямых общего положения, то есть таких, что никакие две не параллельны и никакие три не проходят через одну точку?

ВверхВниз   Решение


Две окружности касаются в точке K. Прямая, проходящая через точку K, пересекает эти окружности в точках A и B. Докажите, что касательные к окружностям, проведенные через точки A и B, параллельны.

ВверхВниз   Решение


В выпуклом пятиугольнике ABCDE сторона BC параллельна диагонали AD, CD || BE, DE || AC и  AE || BD. Докажите, что AB || CE.

ВверхВниз   Решение


Можно ли расставить на футбольном поле четырёх футболистов так, чтобы попарные расстояния между ними равнялись 1, 2, 3, 4, 5 и 6 метров?

ВверхВниз   Решение


В мешке лежат шарики двух разных цветов: черного и белого. Какое наименьшее число шариков нужно вынуть из мешка вслепую так, чтобы среди них заведомо оказались два шарика одного цвета?

ВверхВниз   Решение


Существуют ли несколько невыпуклых многоугольников, из которых можно составить выпуклый?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 207]      



Задача 35709

Темы:   [ Невыпуклые многоугольники ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 2+
Классы: 7,8,9

Существуют ли несколько невыпуклых многоугольников, из которых можно составить выпуклый?
Прислать комментарий     Решение


Задача 35788

Тема:   [ Выпуклые многоугольники ]
Сложность: 2+
Классы: 8,9

Внутри выпуклого многоугольника расположены две точки.
Докажите, что найдётся четырёхугольник с вершинами в вершинах этого многоугольника, содержащий эти две точки.

Прислать комментарий     Решение

Задача 107754

Темы:   [ Невыпуклые многоугольники ]
[ Пятиугольники ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 7,8,9

Существует ли невыпуклый пятиугольник, никакие две из пяти диагоналей которого не имеют общих точек (кроме вершин)?
Прислать комментарий     Решение


Задача 35002

Тема:   [ Выпуклые многоугольники ]
Сложность: 3
Классы: 8,9,10

На плоскости дано n>4 точек. Известно, что любые 4 из них являются вершинами выпуклого четырехугольника. Докажите, что эти n точек являются вершинами выпуклого n-угольника.
Прислать комментарий     Решение


Задача 35120

Темы:   [ Выпуклые и невыпуклые фигуры (прочее) ]
[ Покрытия ]
Сложность: 3
Классы: 9,10

Можно ли осветить круглую арену 100 прожекторами так, чтобы каждый из них освещал выпуклую фигуру, никакой из них не освещал всю арену, но любые два из них вместе уже освещали всю арену?
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 207]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .