ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Три сферы попарно касаются внешним образом, а также касаются некоторой плоскости в вершинах прямоугольного треугольника с катетом 1 и противолежащим углом 30°. Найдите радиусы сфер.

Вниз   Решение


В треугольнике ABC угол BAC прямой, длины сторон AB и BC равны соответственно 5 и 6. Точка K делит сторону AC в отношении 3:1, считая от точки A, AH - высота треугольника ABC. Что больше: 2 или отношение длины BK к длине AH?

ВверхВниз   Решение


В остроугольном треугольнике ABC высоты AA1, BB1 и CC1 пересекаются в точке H. Из точки H провели перпендикуляры к прямым B1C1 и A1C1, которые пересекли лучи CA и CB в точках P и Q соответственно. Докажите, что перпендикуляр, опущенный из точки C на прямую A1B1, проходит через середину отрезка PQ.

ВверхВниз   Решение


Миша решил уравнение  x² + ax + b = 0  и сообщил Диме набор из четырёх чисел – два корня и два коэффициента этого уравнения (но не сказал, какие именно из них корни, а какие – коэффициенты). Сможет ли Дима узнать, какое уравнение решал Миша, если все числа набора оказались различными?

ВверхВниз   Решение


Пусть точки A1, B1 и C1 принадлежат сторонам соответственно BC, AC и AB треугольника ABC.
Докажите, что отрезки AA1, BB1, CC1 пересекаются в одной точке тогда и только тогда, когда  

ВверхВниз   Решение


Точки A', B' и C' – середины сторон соответственно BC, CA и AB треугольника ABC, а BH – его высота.
Докажите, что если описанные окружности треугольников AHC' и CHA' окружности проходят через точку M, то  ∠ABM = ∠CBB'.

ВверхВниз   Решение


Пусть число α задаётся десятичной дробью
  а) 0,101001000100001000001...;
  б) 0,123456789101112131415....
Будет ли это число рациональным?

ВверхВниз   Решение


В треугольнике ABC угол BAC прямой, длины сторон AB и BC равны соответственно 1 и 3. Точка K делит сторону AC в отношении 7:1, считая от точки A. Что больше: длина AC или длина BK?

ВверхВниз   Решение


Можно ли покрыть плоскость паркетом из прямоугольников так, чтобы все эти прямоугольники можно было разрезать одним прямолинейным разрезом?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 121]      



Задача 98314

Темы:   [ Замощения костями домино и плитками ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Правильный (равносторонний) треугольник ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Отношение площадей подобных треугольников ]
Сложность: 3-
Классы: 8,9

При каких целых значениях n правильный треугольник со стороной n можно замостить плитками, имеющими форму равнобочной трапеции со сторонами 1, 1, 1, 2?

Прислать комментарий     Решение

Задача 116473

Темы:   [ Замощения костями домино и плитками ]
[ Текстовые задачи (прочее) ]
Сложность: 3-
Классы: 5,6

Квадрат 8×8 распилили на квадраты 2×2 и прямоугольники 1×4. При этом общая длина распилов оказалась равна 54.
Сколько фигурок каждого вида получилось?

Прислать комментарий     Решение

Задача 88235

Темы:   [ Замощения костями домино и плитками ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Разные задачи на разрезания ]
[ Выпуклые многоугольники ]
Сложность: 3
Классы: 5,6,7,8

Квадратный лист бумаги разрезали на шесть кусков в форме выпуклых многоугольников; пять кусков затерялись, остался один кусок в форме правильного восьмиугольника (см. рисунок). Можно ли по одному этому восьмиугольнику восстановить исходный квадрат?

Прислать комментарий     Решение

Задача 34969

Тема:   [ Замощения костями домино и плитками ]
Сложность: 3
Классы: 7,8,9

Можно ли из 18 доминошек 1×2 выложить квадрат 6×6 так, чтобы при этом не получалось ни одного прямого "шва", соединяющего противоположные стороны квадрата и идущего по краям плиток?

Прислать комментарий     Решение

Задача 35581

Темы:   [ Замощения костями домино и плитками ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10

Можно ли покрыть плоскость паркетом из прямоугольников так, чтобы все эти прямоугольники можно было разрезать одним прямолинейным разрезом?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 121]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .