ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 88235
УсловиеКвадратный лист бумаги разрезали на шесть кусков в форме выпуклых многоугольников; пять кусков затерялись, остался один кусок в форме правильного восьмиугольника (см. рисунок). Можно ли по одному этому восьмиугольнику восстановить исходный квадрат? Подсказка
Могут ли какиенибудь два многоугольника граничить
друг с другом больше, чем по одной стороне?
РешениеПоскольку пропавшие пять многоугольников являются выпуклыми, то ни один из них не может иметь с восьмиугольником границу больше чем по одной стороне. А это значит, что как минимум три стороны восьмиугольника принадлежат квадрату. Это соображение позволяет однозначно восстановить размеры квадрата; длина его стороны равна расстоянию между противоположными сторонами восьмиугольника. ОтветДа. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке