ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Постройте квадрат, три вершины которого лежат на трёх данных параллельных прямых.

Вниз   Решение


Докажите, что не существует на плоскости четырех точек A, B, C и D таких, что все треугольники ABC, BCD, CDA, DAB остроугольные.

ВверхВниз   Решение


Дан прямоугольный треугольник. Впишите в него прямоугольник с общим прямым углом, у которого диагональ минимальна.

ВверхВниз   Решение


Точки M и N расположены на стороне BC треугольника ABC, а точка K – на стороне AC, причём BM : MN : NC = 1 : 1 : 2 и CK : AK = 1 : 4. Известно, что площадь треугольника ABC равна 1. Найдите площадь четырёхугольника AMNK.

ВверхВниз   Решение


Найти все прямые в пространстве, проходящие через данную точку M на данном расстоянии d от данной прямой AB.

ВверхВниз   Решение


Двое по очереди ставят ладей на шахматную доску так, чтобы ладьи не били друг друга. Проигрывает тот, кто не может сделать ход. Кто выиграет?

ВверхВниз   Решение


В выпуклом четырехугольнике найдите точку, для которой сумма расстояний до вершин минимальна.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 165]      



Задача 35472

Темы:   [ Четырехугольники (экстремальные свойства) ]
[ Неравенство треугольника (прочее) ]
Сложность: 2+
Классы: 8,9

В выпуклом четырехугольнике найдите точку, для которой сумма расстояний до вершин минимальна.
Прислать комментарий     Решение


Задача 57535

Тема:   [ Экстремальные точки треугольника ]
Сложность: 2+
Классы: 9

Из точки M, лежащей на стороне AB остроугольного треугольника ABC, опущены перпендикуляры MP и MQ на стороны BC и AC. При каком положении точки M длина отрезка PQ минимальна?
Прислать комментарий     Решение


Задача 57543

Тема:   [ Угол (экстремальные свойства) ]
Сложность: 2+
Классы: 9

На одной стороне острого угла даны точки A и B. Постройте на другой его стороне точку C, из которой отрезок AB виден под наибольшим углом.
Прислать комментарий     Решение


Задача 57549

Тема:   [ Четырехугольники (экстремальные свойства) ]
Сложность: 2+
Классы: 9

Внутри выпуклого четырехугольника найдите точку, сумма расстояний от которой до вершин была бы наименьшей.
Прислать комментарий     Решение


Задача 35027

Темы:   [ Треугольник (экстремальные свойства) ]
[ Неравенство треугольника ]
Сложность: 3
Классы: 8,9,10

Три офиса A, B и C одной фирмы расположены в вершинах треугольника. В офисе A работают 10 человек, в офисе B - 20, а в офисе C - 30. Где нужно построить столовую, чтобы суммарное расстояние, проходимое всеми сотрудниками фирмы, было бы как можно меньше?
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 165]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .