ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Автор: Анджанс А.

В таблице N×N, заполненной числами, все строки различны (две строки называются различными, если они отличаются хотя бы в одном элементе).
Докажите, что из таблицы можно вычеркнуть некоторый столбец так, что в оставшейся таблице опять все строки будут различны.

Вниз   Решение


На клетчатой бумаге отмечены произвольным образом 2000 клеток. Докажите, что среди них всегда можно выбрать не менее 500 клеток, попарно не соприкасающихся друг с другом (соприкасающимися считаются клетки, имеющие хотя бы одну общую вершину).

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 161]      



Задача 35674

Тема:   [ Шахматная раскраска ]
Сложность: 2+
Классы: 7,8

На каждой из клеток доски размером 9×9 находится фишка. Петя хочет передвинуть каждую фишку на соседнюю по стороне клетку так, чтобы снова в каждой из клеток оказалось по одной фишке. Сможет ли Петя это сделать?

Прислать комментарий     Решение

Задача 34897

Тема:   [ Вспомогательная раскраска ]
Сложность: 2+

Назовем крокодилом шахматную фигуру, ход которой заключается в прыжке на m клеток по вертикали или по горизонтали, и потом на n клеток в перпендикулярном направлении. Докажите что для любых m и n можно так раскрасить бесконечную клетчатую доску в 2 цвета (для каждых конкретных m и n своя раскраска), что всегда 2 клетки, соединенные одним ходом крокодила, будут покрашены в разные цвета.
Прислать комментарий     Решение


Задача 103868

Темы:   [ Шахматная раскраска ]
[ Примеры и контрпримеры. Конструкции ]
[ Симметрия помогает решить задачу ]
Сложность: 3-
Классы: 6,7

Отметьте на доске 8×8 несколько клеток так, чтобы любая (в том числе и любая отмеченная) клетка граничила по стороне ровно с одной отмеченной клеткой.

Прислать комментарий     Решение


Задача 35254

Тема:   [ Вспомогательная раскраска (прочее) ]
Сложность: 3-
Классы: 7,8,9

На клетчатой бумаге отмечены произвольным образом 2000 клеток. Докажите, что среди них всегда можно выбрать не менее 500 клеток, попарно не соприкасающихся друг с другом (соприкасающимися считаются клетки, имеющие хотя бы одну общую вершину).
Прислать комментарий     Решение


Задача 103736

Темы:   [ Шахматная раскраска ]
[ Замощения костями домино и плитками ]
[ Прямоугольные параллелепипеды ]
[ Куб ]
Сложность: 3-
Классы: 7

Автор: Ботин Д.А.

Можно ли из 13 кирпичей 1×1×2 сложить куб 3×3×3 с дыркой 1×1×1 в центре?

Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 161]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .