Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 161]
В каждой клетке доски 5×5 клеток сидит жук.
В некоторый момент все жуки переползают на соседние (по
горизонтали или вертикали) клетки. Обязательно ли при
этом останется пустая клетка?
На клетчатой бумаге даны произвольные
n клеток.
Докажите, что из них можно выбрать не менее
n/4 клеток,
не имеющих общих точек.
Плоскость раскрашена в три цвета. Докажите, что
найдутся две точки одного цвета, расстояние между которыми равно 1.
|
|
Сложность: 3 Классы: 8,9,10,11
|
В каждой клетке полоски длины 100 стоит по фишке.
Можно за 1 рубль поменять местами любые две соседние фишки, а также можно бесплатно поменять местами любые две фишки, между которыми стоят ровно три фишки.
За какое наименьшее количество рублей можно переставить фишки в обратном порядке?
|
|
Сложность: 3 Классы: 7,8,9
|
В левый нижний угол шахматной доски 8×8 поставлено в форме квадрата 3×3 девять фишек. Фишка может прыгать на свободное поле через рядом стоящую фишку, то есть симметрично отражаться относительно её центра (прыгать можно по вертикали, горизонтали и диагонали). Можно ли за некоторое количество таких ходов поставить все фишки вновь в форме квадрата 3×3, но в другом углу:
а) левом верхнем,
б) правом верхнем?
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 161]