ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Проведём в выпуклом многоугольнике некоторые диагонали так, что никакие две из них не пересекаются (из одной вершины могут выходить несколько диагоналей). Доказать, что найдутся по крайней мере две вершины многоугольника, из которых не проведено ни одной диагонали.

Вниз   Решение


Внутри угла AOB, равного 120°, проведены лучи OC и OD так, что каждый из них является биссектрисой какого-то из углов, получившихся на чертеже. Найдите величину угла AOC, указав все возможные варианты.

ВверхВниз   Решение


Рассмотрим равнобедренные треугольники с одними и теми же боковыми сторонами.
Докажите, что чем больше основание, тем меньше проведённая к нему высота.

ВверхВниз   Решение


Можно ли из 18 доминошек 1×2 выложить квадрат 6×6 так, чтобы при этом не получалось ни одного прямого "шва", соединяющего противоположные стороны квадрата и идущего по краям плиток?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 121]      



Задача 98314

Темы:   [ Замощения костями домино и плитками ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Правильный (равносторонний) треугольник ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Отношение площадей подобных треугольников ]
Сложность: 3-
Классы: 8,9

При каких целых значениях n правильный треугольник со стороной n можно замостить плитками, имеющими форму равнобочной трапеции со сторонами 1, 1, 1, 2?

Прислать комментарий     Решение

Задача 116473

Темы:   [ Замощения костями домино и плитками ]
[ Текстовые задачи (прочее) ]
Сложность: 3-
Классы: 5,6

Квадрат 8×8 распилили на квадраты 2×2 и прямоугольники 1×4. При этом общая длина распилов оказалась равна 54.
Сколько фигурок каждого вида получилось?

Прислать комментарий     Решение

Задача 88235

Темы:   [ Замощения костями домино и плитками ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Разные задачи на разрезания ]
[ Выпуклые многоугольники ]
Сложность: 3
Классы: 5,6,7,8

Квадратный лист бумаги разрезали на шесть кусков в форме выпуклых многоугольников; пять кусков затерялись, остался один кусок в форме правильного восьмиугольника (см. рисунок). Можно ли по одному этому восьмиугольнику восстановить исходный квадрат?

Прислать комментарий     Решение

Задача 34969

Тема:   [ Замощения костями домино и плитками ]
Сложность: 3
Классы: 7,8,9

Можно ли из 18 доминошек 1×2 выложить квадрат 6×6 так, чтобы при этом не получалось ни одного прямого "шва", соединяющего противоположные стороны квадрата и идущего по краям плиток?

Прислать комментарий     Решение

Задача 35581

Темы:   [ Замощения костями домино и плитками ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10

Можно ли покрыть плоскость паркетом из прямоугольников так, чтобы все эти прямоугольники можно было разрезать одним прямолинейным разрезом?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 121]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .