ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

В вершинах куба расставлены числа: 7 нулей и одна единица. За один ход разрешается прибавить по единице к числам в концах любого ребра куба. Можно ли добиться того, чтобы все числа стали равными? А можно ли добиться того, чтобы все числа делились на 3?

Вниз   Решение


Верно ли, что из любых десяти отрезков найдутся три отрезка, из которых можно составить треугольник?

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 841]      



Задача 34937

Темы:   [ Неравенство треугольника ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 8,9

Верно ли, что из любых десяти отрезков найдутся три отрезка, из которых можно составить треугольник?

Прислать комментарий     Решение

Задача 35234

Тема:   [ Многоугольники (неравенства) ]
Сложность: 2+
Классы: 7,8,9

В круг радиуса 1 вписан пятиугольник. Докажите, что сумма длин его сторон и диагоналей меньше 17.

Прислать комментарий     Решение

Задача 35496

Темы:   [ Алгебраические задачи на неравенство треугольника ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 8,9

Даны 100 палочек. Верно ли, что из них можно выбрать несколько палочек, из которых можно сложить многоугольник?
Прислать комментарий     Решение


Задача 116446

Темы:   [ Неравенство треугольника (прочее) ]
[ Целочисленные треугольники ]
Сложность: 2+
Классы: 8,9,10

Автор: Фольклор

Какое наименьшее значение может принимать периметр неравнобедренного треугольника с целыми длинами сторон?

Прислать комментарий     Решение

Задача 116529

Тема:   [ Против большей стороны лежит больший угол ]
Сложность: 2+
Классы: 8,9,10

Автор: Фольклор

В треугольнике АВС проведена биссектриса BD. Докажите, что АВ > AD.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 841]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .