ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Докажите, что числа    а)  232001 + 1;     б)  232001 – 1   – составные.

Вниз   Решение


Деревянный куб покрасили снаружи белой краской, каждое его ребро разделили на 5 равных частей, после чего куб распилили так, что получились маленькие кубики, у которых ребро в 5 раз меньше, чем у исходного куба. Сколько получилось маленьких кубиков, у которых окрашена хотя бы одна грань?

ВверхВниз   Решение


Может ли в государстве, в котором из каждого города выходит три дороги, быть ровно 100 дорог?

ВверхВниз   Решение


Существует ли выпуклый 1978-угольник, у которого все углы выражаются целым числом градусов?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 77]      



Задача 64889

Тема:   [ Сумма внутренних и внешних углов многоугольника ]
Сложность: 2+
Классы: 10,11

Существует ли выпуклый 1000-угольник, у которого все углы выражаются целыми числами градусов?

Прислать комментарий     Решение

Задача 65983

Темы:   [ Сумма внутренних и внешних углов многоугольника ]
[ Тригонометрический круг ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 2+
Классы: 9,10,11

В выпуклом четырёхугольнике тангенс одного из углов равен числу m. Могут ли тангенсы каждого из трёх остальных углов также равняться m?

Прислать комментарий     Решение

Задача 76517

Тема:   [ Сумма внутренних и внешних углов многоугольника ]
Сложность: 2+
Классы: 8,9

Какое наибольшее число острых углов может встретиться в выпуклом многоугольнике?

Прислать комментарий     Решение

Задача 115451

Темы:   [ Сумма внутренних и внешних углов многоугольника ]
[ Неравенство треугольника (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Четырехугольник: вычисления, метрические соотношения. ]
Сложность: 3-
Классы: 8,9,10

Пусть α , β , γ и δ  — градусные меры углов некоторого выпуклого четырехугольника. Всегда ли из этих четырех чисел можно выбрать три числа так, чтобы они выражали длины сторон некоторого треугольника (например, в метрах)?
Прислать комментарий     Решение


Задача 32007

Темы:   [ Сумма внутренних и внешних углов многоугольника ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 3-
Классы: 7,8,9

Существует ли выпуклый 1978-угольник, у которого все углы выражаются целым числом градусов?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 77]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .