|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На одной из сторон данного острого угла лежит точка A. Постройте на этой же стороне угла точку, равноудаленную от второй стороны угла и от точки A. Найти все натуральные числа p, что p, p² + 4 и p² + 6 – простые числа. Основание пирамиды – равнобедренный треугольник с углом ϕ при вершине. Все боковые рёбра пирамиды равны a . Найдите объём пирамиды, если радиус окружности, вписанной в треугольник основания, равен r . Какое наименьшее количество клеток требуется отметить на шахматной доске, чтобы каждая клетка доски (отмеченная или неотмеченная) граничила по стороне хотя бы с одной отмеченной клеткой? В полукруг радиуса R с центром в точке O вписан квадрат ABCD так, что точки A и D лежат на диаметре, а точки B и C – на окружности. Найдите радиус окружности, вписанной в треугольник OBC . Докажите, что биссектриса равнобедренного треугольника, проведённая из вершины, является медианой и высотой. Миша сложил из восьми брусков куб (см. рис.). Все бруски имеют один и тот же объём, серые бруски одинаковые и белые бруски тоже одинаковые. Какую часть ребра куба составляют длина, ширина и высота белого бруска? Квадрат 8×8 распилили на квадраты 2×2 и прямоугольники 1×4. При этом общая длина распилов оказалась равна 54. Точка M – середина ребра AD тетраэдра ABCD . Точка N лежит на продолжении ребра AB за точку B , точка K – на продолжении ребра AC за точку C , причём BN = AB и CK = 2AC . Постройте сечение тетраэдра плоскостью MNK . В каком отношении эта плоскость делит рёбра DB и DC ? 30 команд сыграли турнир по олимпийской системе. Сколько всего было сыграно матчей? |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 545]
Даны 16 чисел: 1, 11, 21, 31 и т.д. (каждое следующее на 10 больше предыдущего).
Попробуйте быстро найти сумму всех цифр в этой таблице:
Сколькими способами можно расставить чёрную и белую ладьи на шахматной доске так, чтобы они не били друг друга?
Сколькими способами можно поставить на шахматную доску белого и чёрного королей так, чтобы получилась допустимая правилами игры позиция?
30 команд сыграли турнир по олимпийской системе. Сколько всего было сыграно матчей?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 545] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|