ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

На одной из сторон данного острого угла лежит точка A. Постройте на этой же стороне угла точку, равноудаленную от второй стороны угла и от точки A.

Вниз   Решение


Найти все натуральные числа p, что p,  p² + 4  и  p² + 6  – простые числа.

ВверхВниз   Решение


Основание пирамиды – равнобедренный треугольник с углом ϕ при вершине. Все боковые рёбра пирамиды равны a . Найдите объём пирамиды, если радиус окружности, вписанной в треугольник основания, равен r .

ВверхВниз   Решение


Какое наименьшее количество клеток требуется отметить на шахматной доске, чтобы каждая клетка доски (отмеченная или неотмеченная) граничила по стороне хотя бы с одной отмеченной клеткой?

ВверхВниз   Решение


В полукруг радиуса R с центром в точке O вписан квадрат ABCD так, что точки A и D лежат на диаметре, а точки B и C – на окружности. Найдите радиус окружности, вписанной в треугольник OBC .

ВверхВниз   Решение


Докажите, что биссектриса равнобедренного треугольника, проведённая из вершины, является медианой и высотой.

ВверхВниз   Решение


Миша сложил из восьми брусков куб (см. рис.). Все бруски имеют один и тот же объём, серые бруски одинаковые и белые бруски тоже одинаковые. Какую часть ребра куба составляют длина, ширина и высота белого бруска?

ВверхВниз   Решение


Квадрат 8×8 распилили на квадраты 2×2 и прямоугольники 1×4. При этом общая длина распилов оказалась равна 54.
Сколько фигурок каждого вида получилось?

ВверхВниз   Решение


Точка M – середина ребра AD тетраэдра ABCD . Точка N лежит на продолжении ребра AB за точку B , точка K – на продолжении ребра AC за точку C , причём BN = AB и CK = 2AC . Постройте сечение тетраэдра плоскостью MNK . В каком отношении эта плоскость делит рёбра DB и DC ?

ВверхВниз   Решение


30 команд сыграли турнир по олимпийской системе. Сколько всего было сыграно матчей?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 545]      



Задача 88140

Темы:   [ Числовые таблицы и их свойства ]
[ Деление с остатком ]
[ Примеры и контрпримеры. Конструкции ]
[ Шахматная раскраска ]
Сложность: 2
Классы: 5,6,7

Даны 16 чисел: 1, 11, 21, 31 и т.д. (каждое следующее на 10 больше предыдущего).
Можно ли расставить их в таблице 4×4 так, чтобы разность каждых двух чисел, стоящих в соседних по стороне клетках, не делилась на 4?

Прислать комментарий     Решение

Задача 88147

Темы:   [ Числовые таблицы и их свойства ]
[ Разбиения на пары и группы; биекции ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 5,6,7

Попробуйте быстро найти сумму всех цифр в этой таблице:

Прислать комментарий     Решение

Задача 102877

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Правило произведения ]
Сложность: 2
Классы: 6,7,8

Сколькими способами можно расставить чёрную и белую ладьи на шахматной доске так, чтобы они не били друг друга?

Прислать комментарий     Решение

Задача 30327

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Классическая комбинаторика (прочее) ]
[ Правило произведения ]
Сложность: 2+
Классы: 6,7

Сколькими способами можно поставить на шахматную доску белого и чёрного королей так, чтобы получилась допустимая правилами игры позиция?

Прислать комментарий     Решение

Задача 31360

Тема:   [ Турниры и турнирные таблицы ]
Сложность: 2+
Классы: 5,6,7,8

30 команд сыграли турнир по олимпийской системе. Сколько всего было сыграно матчей?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 545]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .