ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

AB и CD – параллельные прямые, AC – секущая (точки B и D находятся по одну сторону от прямой AC), E и F – точки пересечения прямых AB и CD с биссектрисами углов C и A. Известно, что  AF = 96,  CE = 110.  Найдите AC.

Вниз   Решение


В равнобедренный треугольник ABC  (AB = BC)  вписана окружность. Прямая, параллельная стороне BC и касающаяся окружности, пересекает сторону AB в такой точке N такой, что  AN = ⅜ AB.  Найдите радиус окружности, если площадь треугольника ABC равна 12.

ВверхВниз   Решение


Диагонали четырёхугольника ABCD пересекаются в точке O.
Докажите, что произведение площадей треугольников AOB и COD равно произведению площадей треугольников BOC и DOA.

ВверхВниз   Решение


Приведите пример такого квадратного трехчлена $P(x)$, что при любом $x$ справедливо равенство $P(x)+P(x+1)+\dots + P(x+10)=x^2$.

ВверхВниз   Решение


Основанием пирамиды служит прямоугольный треугольник с острым углом . Каждое боковое ребро равно и наклонено к плоскости основания под углом . Найдите объём пирамиды.

ВверхВниз   Решение


В стране Курляндии m футбольных команд (по 11 футболистов в каждой). Все футболисты собрались в аэропорту для поездки в другую страну на ответственный матч. Самолет сделал 10 рейсов, перевозя каждый раз по m пассажиров. Еще один футболист прилетел к месту предстоящего матча на вертолете. Докажите, что хотя бы одна команда была целиком доставлена в другую страну.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 369]      



Задача 21975

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2+
Классы: 7,8

В стране Курляндии m футбольных команд (по 11 футболистов в каждой). Все футболисты собрались в аэропорту для поездки в другую страну на ответственный матч. Самолет сделал 10 рейсов, перевозя каждый раз по m пассажиров. Еще один футболист прилетел к месту предстоящего матча на вертолете. Докажите, что хотя бы одна команда была целиком доставлена в другую страну.

Прислать комментарий     Решение

Задача 35566

Темы:   [ Принцип Дирихле (прочее) ]
[ Прямые и плоскости в пространстве (прочее) ]
Сложность: 2+
Классы: 9,10

В воздушном пространстве находятся облака. Оказалось, что пространство можно разбить десятью плоскостями на части так, чтобы в каждой из частей находилось не более одного облака. Через какое наибольшее число облаков мог пролететь самолет, придерживаясь прямолинейного курса?
Прислать комментарий     Решение


Задача 60352

Темы:   [ Принцип Дирихле (прочее) ]
[ Классическая комбинаторика (прочее) ]
Сложность: 2+
Классы: 7,8,9

В мешке 70 шаров, отличающихся только цветом: 20 красных, 20 синих, 20 жёлтых, остальные – чёрные и белые.
Какое наименьшее число шаров надо вынуть из мешка, не видя их, чтобы среди них было не менее 10 шаров одного цвета?

Прислать комментарий     Решение

Задача 110920

Темы:   [ Принцип Дирихле (прочее) ]
[ Перебор случаев ]
Сложность: 2+
Классы: 6,7,8

У Пети в кармане несколько монет. Если Петя наугад вытащит из кармана 3 монеты, среди них обязательно найдётся монета "1 рубль". Если Петя наугад вытащит 4 монеты из кармана, среди них обязательно найдётся монета "2 рубля". Петя вытащил из кармана 5 монет. Назовите эти монеты.
Прислать комментарий     Решение


Задача 34962

Темы:   [ Принцип Дирихле (прочее) ]
[ Системы отрезков, прямых и окружностей ]
Сложность: 2+
Классы: 7,8,9

Можно ли расположить на плоскости 1000 отрезков так, чтобы каждый отрезок своими концами упирался строго внутрь других отрезков.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 369]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .