|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Дана трапеция ABCD с основаниями AD = 3 и BC = 18. Точка M расположена на диагонали AC, причём AM : MC = 1 : 2. Прямая, проходящая через точку M параллельно основаниям трапеции, пересекает диагональ BD в точке N. Найдите MN. При каком наименьшем $n$ для любого набора $A$ из $2007$ множеств найдется такой набор $B$ из $n$ множеств, что каждое множество набора $A$ является пересечением двух различных множеств набора $B$?
В городе Н при невыясненных обстоятельствах территория одного из заводов превратилась в аномальную зону. Все подъезды к территории были перекрыты, а сама она получила название промзоны. В промзоне находятся N зданий, некоторые из них соединены дорогами. По любой дороге можно перемещаться в обоих направлениях. Начинающий сталкер получил задание добраться до склада в промзоне. Он нашел в электронном архиве несколько карт территории промзоны. Так как карты составлялись разными людьми, то на каждой из них есть информация только о некоторых дорогах промзоны. Одна и та же дорога может присутствовать на нескольких картах. В пути сталкер может загружать из архива на мобильный телефон по одной карте. При загрузке новой карты предыдущая в памяти телефона не сохраняется. Сталкер может перемещаться лишь по дорогам, отмеченным на карте, загруженной на данный момент. Каждая загрузка карты стоит 1 рубль. Для минимизации расходов сталкеру нужно выбрать такой маршрут, чтобы как можно меньшее число раз загружать карты. Сталкер может загружать одну и ту же карту несколько раз, при этом придется заплатить за каждую загрузку. Изначально в памяти мобильного телефона нет никакой карты. Требуется написать программу, которая вычисляет минимальную сумму расходов, необходимую сталкеру, чтобы добраться от входа в промзону до склада. Формат входных данных В первой строке входного файла находятся два натуральных числа N и K (2 ≤ N ≤ 2000; 1 ≤ K ≤ 2000) - количество зданий промзоны и количество карт соответственно. Вход в промзону находится в здании с номером 1, а склад - в здании с номером N. В последующих строках находится информация об имеющихся картах. Первая строка описания i-ой карты содержит число ri - количество дорог, обозначенных на i-ой карте. Затем идут ri строк, содержащие по два натуральных числа a и b (1 ≤ a, b ≤ N; a ≠ b), означающих наличие на i-ой карте дороги, соединяющей здания a и b. Суммарное количество дорог, обозначенных на всех картах, не превышает 300 000 (r1 + r2 + ... + rK ≤ 300 000). Формат выходных данных В выходной файл необходимо вывести одно число - минимальную сумму расходов сталкера. В случае, если до склада добраться невозможно, выведите число -1. Примеры
В треугольнике ABC медианы AE и BD, проведённые к сторонам BC и AC, пересекаются под прямым уголом. Сторона BC равна a. Найдите другие стороны треугольника ABC, если AE2 + BD2 = d2.
В выражении (x4 + x³ – 3x² + x + 2)2006 раскрыли скобки и привели подобные слагаемые. Постройте прямоугольный треугольник по отношению его катетов и высоте, опущенной на гипотенузу.
Кое-кто в классе смотрит футбол, кое-кто – мультики, но нет таких, кто не смотрит ни то, ни другое. У любителей мультиков средний балл по математике меньше 4, у любителей футбола – тоже меньше 4. Может ли средний балл всего класса по математике быть больше 4? |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 168]
В классе находятся учитель и несколько учеников. Известно, что возраст учителя на 24 года больше среднего возраста учеников и на 20 лет больше среднего возраста всех присутствующих в классе. Сколько учеников находится в классе?
Кое-кто в классе смотрит футбол, кое-кто – мультики, но нет таких, кто не смотрит ни то, ни другое. У любителей мультиков средний балл по математике меньше 4, у любителей футбола – тоже меньше 4. Может ли средний балл всего класса по математике быть больше 4?
Пусть a и b – два положительных числа, причём a < b. Построим по этим числам две последовательности {an} и {bn} по правилам: a0 = a, b0 = b, an+1 =
Докажите, что обе эти последовательности имеют один и тот же предел. Этот предел называется арифметико-геометрическим средним чисел a, b и обозначается μ(a, b).
Пусть a и b – два положительных числа, и a < b. Определим две последовательности чисел {an} и {bn} формулами: a0 = a,   b0 = b, an+1 = а) Докажите, что обе эти последовательности имеют общий предел. Этот предел называется арифметико-гармоническим средним чисел a и b. б) Докажите, что этот предел совпадает со средним геометрическим чисел a и b. в) Пусть a = 1, b = k. Как последовательность {bn} связана с последовательностью {xn} из задачи 61299?
Назовём геометрико-гармоническим средним чисел a и b общий предел последовательностей {an} и {bn}, построенных по правилу a0 = a, b0 = b, an+1 =
Обозначим его через ν(a, b). Докажите, что величина
ν(a, b) связана с μ(a, b) (см. задачу 61322) равенством
ν(a, b)·μ(1/a, 1/b) = 1.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 168] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|