|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Непересекающиеся диагонали двух смежных граней прямоугольного параллелепипеда наклонены к плоскости основания под углами α и β . Найдите угол между этими диагоналями. На плоскости даны три окружности, центры которых не лежат на одной прямой. Проведем радикальные оси для каждой пары этих окружностей. Докажите, что все три радикальные оси пересекаются в одной точке. Решить уравнение x8 + 4x4 + x² + 1 = 0. Дан равнобедренный треугольник ABC (AB = AC). На меньшей дуге AB описанной около него окружности взята точка D. На продолжении отрезка AD за точку D выбрана точка E так, что точки A и E лежат в одной полуплоскости относительно BC. Описанная окружность треугольника BDE пересекает сторону AB в точке F. Докажите, что прямые EF и BC параллельны. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 604]
Дан равнобедренный треугольник ABC (AB = AC). На меньшей дуге AB описанной около него окружности взята точка D. На продолжении отрезка AD за точку D выбрана точка E так, что точки A и E лежат в одной полуплоскости относительно BC. Описанная окружность треугольника BDE пересекает сторону AB в точке F. Докажите, что прямые EF и BC параллельны.
Угловая величина дуги AB равна α < 90°. На продолжении радиуса OA отложен отрезок AC, равный хорде AB, и точка C соединена с B. Найдите угол ACB.
В треугольнике ABC угол C прямой. Из центра C радиусом AC описана дуга ADE, пересекающая гипотенузу в точке D, а катет CB – в точке E.
Докажите, что в равнобедренном треугольнике медиана, проведённая к основанию, является биссектрисой и высотой.
В равнобедренном треугольнике ABC с основанием AC проведена
медиана BM. На ней взята точка D. Докажите равенство треугольников:
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 604] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|