ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Автор: Фольклор

Существуют ли два одночлена, произведение которых равно –12а4b², а сумма является одночленом с коэффициентом 1?

Вниз   Решение


(В. Баур, Ф.Штрассен) Дана программа вычисления значения некоторого многочлена P(x1,..., xn), содержащая только команды присваивания. Их правые части — выражения, содержащие сложение, умножение, константы, переменные x1,..., xn и ранее встречавшиеся (в левой части) переменные. Доказать, что существует программа того же типа, вычисляющая все n производных $ \partial$P/$ \partial$x1,...,$ \partial$P/$ \partial$xn, причём общее число арифметических операций не более чем в C раз превосходит число арифметических операций в исходной программе. Константа C не зависит от n.

ВверхВниз   Решение


Есть 100 коробок, пронумерованных числами от 1 до 100. В одной коробке лежит приз и ведущий знает, где он находится. Зритель может послать ведущему пачку записок с вопросами, требующими ответа "да" или "нет". Ведущий перемешивает записки в пачке и, не оглашая вслух вопросов, честно отвечает на все. Какое наименьшее количество записок нужно послать, чтобы наверняка узнать, где находится приз?

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 17]      



Задача 116145

Темы:   [ Логика и теория множеств (прочее) ]
[ Линейные неравенства и системы неравенств ]
Сложность: 2+
Классы: 7,8,9

Из четырёх неравенств  2x > 70,  x < 100,  4x > 25  и  x > 5  два истинны и два ложны. Найдите значение x, если известно, что оно целое.

Прислать комментарий     Решение

Задача 66563

Тема:   [ Логика и теория множеств (прочее) ]
Сложность: 3
Классы: 6,7,8,9,10,11

Автор: Фольклор

Среди зрителей кинофестиваля было поровну мужчин и женщин. Всем зрителям понравилось одинаковое количество фильмов. Каждый фильм понравился восьми зрителям. Докажите, что не менее $3/7$ фильмов обладают следующим свойством: среди зрителей, которым фильм понравился, не менее двух мужчин.
Прислать комментарий     Решение


Задача 67145

Темы:   [ Логика и теория множеств (прочее) ]
[ Доказательство от противного ]
Сложность: 3
Классы: 6,7,8,9

Можно ли раскрасить все натуральные числа, большие 1, в три цвета (каждое число – в один цвет, все три цвета должны использоваться) так, чтобы цвет произведения любых двух чисел разного цвета отличался от цвета каждого из сомножителей?
Прислать комментарий     Решение


Задача 67178

Тема:   [ Логика и теория множеств (прочее) ]
Сложность: 3
Классы: 7,8,9

На столе в ряд стоят $23$ шкатулки, в одной из которых находится приз. На каждой шкатулке написано либо «Здесь приза нет», либо «Приз в соседней шкатулке». Известно, что ровно одно из этих утверждений правдиво. Что написано на средней шкатулке?
Прислать комментарий     Решение


Задача 67455

Тема:   [ Логика и теория множеств (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Герцог Сумматор выбрал некоторые вещественные числа (хотя бы одно, но, возможно, бесконечное количество). То же самое сделал герцог Вычитатор. Оказалось, что если $x$ является числом Сумматора, а $y$ является числом Вычитатора, то $x+y$ является числом Сумматора, а $y - x$ является числом Вычитатора. Обязательно ли все числа Сумматора являются числами Вычитатора?
Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .