ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

После обеда на прозрачной квадратной скатерти остались тёмные пятна общей площади S. Оказалось, что если сложить скатерть пополам вдоль любой из двух линий, соединяющих середины противоположных её сторон, или же вдоль одной из двух её диагоналей, то общая видимая площадь пятен будет равна S1. Если же сложить скатерть пополам вдоль другой её диагонали, то общая видимая площадь пятен останется равна S. Какое наименьшее значение может принимать величина  S1 : S?

Вниз   Решение


По окружности отметили 40 красных, 30 синих и 20 зеленых точек. На каждой дуге между соседними красной и синей точками поставили цифру 1, на каждой дуге между соседними красной и зеленой – цифру 2, а на каждой дуге между соседними синей и зеленой – цифру 3. (На дугах между одноцветными точками поставили 0.) Найдите максимальную возможную сумму поставленных чисел.

ВверхВниз   Решение


Для всех действительных x и y выполняется равенство  f(x² + y) = f(x) + f(y²).  Найдите  f(–1).

ВверхВниз   Решение


На каждой стороне треугольника ABC построено по квадрату во внешнюю сторону (пифагоровы штаны). Оказалось, что внешние вершины всех квадратов лежат на одной окружности. Доказать, что треугольник ABC — равнобедренный.

ВверхВниз   Решение


На стороне AB треугольника ABC отмечена точка K. Отрезок CK пересекает медиану AM треугольника в точке P. Оказалось, что  AK = AP.
Найдите отношение  BK : PM.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 200]      



Задача 116477

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Средняя линия треугольника ]
[ Вспомогательные подобные треугольники ]
Сложность: 3-
Классы: 7,8,9

На стороне AB треугольника ABC отмечена точка K. Отрезок CK пересекает медиану AM треугольника в точке P. Оказалось, что  AK = AP.
Найдите отношение  BK : PM.

Прислать комментарий     Решение

Задача 54658

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Элементарные (основные) построения циркулем и линейкой ]
Сложность: 3
Классы: 8,9

С помощью циркуля и линейки разделите данный отрезок на n равных частей.

Прислать комментарий     Решение

Задача 64997

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Медиана, проведенная к гипотенузе ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3
Классы: 7,8,9

В треугольнике ABC на сторонах AB, AC и BC выбраны точки D, E и F соответственно так, что  BF = 2CF,  CE = 2AE  и угол DEF – прямой.
Докажите, что DE – биссектриса угла ADF.

Прислать комментарий     Решение

Задача 66644

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Пусть $AL$ — биссектриса треугольника $ABC$, точка $D$ — ее середина, $E$ — проекция $D$ на $AB$. Известно, что $AC = 3 AE$. Докажите, что треугольник $CEL$ равнобедренный.
Прислать комментарий     Решение


Задача 108924

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

На сторонах AB и BC треугольника ABC взяты точки D и E соответственно, причём  AD/DB = BE/EC = 2  и  ∠C = 2∠DEB.
Докажите, что треугольник ABC – равнобедренный.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 200]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .