Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 200]
В треугольнике ABC точка M – середина стороны AC,
точка P лежит на стороне BC. Отрезок AP пересекает BM в точке O. Оказалось, что BO = BP.
Найдите отношение OM : PC.
На медиане AM треугольника ABC взята точка K, причём
AK : KM = 1 : 3.
Найдите отношение, в котором прямая, проходящая через точку K параллельно стороне AC, делит сторону BC.
|
|
Сложность: 3 Классы: 7,8,9
|
На сторонах AC и BC треугольника ABC выбраны точки M и N соответственно так, что MN || AB. На стороне AC отмечена точка K так, что CK = AM. Отрезки AN и BK пересекаются в точке F. Докажите, что площади треугольника ABF и четырёхугольника KFNC равны.
|
|
Сложность: 3+ Классы: 9,10
|
Точки Е и F – середины сторон ВС и AD выпуклого четырёхугольника АВСD. Докажите, что отрезок EF делит диагонали АС и BD в одном и том же отношении.
На стороне CB треугольника ABC взята точка M, а на стороне CA – точка P. Известно, что CP : CA = 2CM : CB. Через точку M проведена прямая, параллельная CA, а через P – прямая параллельная AB. Докажите, что построенные прямые пересекаются на медиане CN.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 200]