|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В треугольнике ABC биссектриса AL, серединный перпендикуляр к стороне AB и высота BK пересекаются в одной точке. Докажите, что биссектриса AL, серединный перпендикуляр к AC и высота CH, также пересекаются в одной точке. |
Задача 54658
УсловиеС помощью циркуля и линейки разделите данный отрезок на n равных частей. ПодсказкаНа произвольном луче с началом в конце данного отрезка отложите n равных отрезков. РешениеПусть AB – данный отрезок. Возьмём произвольную точку C вне прямой AB. На луче AC отложим последовательно n равных отрезков. Конец D последного из них соединим с точкой B. Через концы отложенных отрезков проведём прямые, параллельные DB. По теореме Фалеса эти прямые разделят отрезок AB также на n равных отрезков. Источники и прецеденты использования |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|