ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Дан остроугольный треугольник ABC; AA1, BB1 – его высоты. Из точки A1 опустили перпендикуляры на прямые AC и AB, а из точки B1 опустили перпендикуляры на прямые BC и BA. Докажите, что основания перпендикуляров образуют равнобокую трапецию.

Вниз   Решение


В парламенте 200 депутатов. В процессе заседания произошло 200 потасовок, в каждой из которой участвовали некоторые два депутата.
Докажите, что можно объединить в комиссию 67 депутатов, из которых никакие два не выясняли между собой отношения в потасовке.

ВверхВниз   Решение


Митя собирается согнуть квадратный лист бумаги ABCD. Митя называет сгиб красивым, если сторона AB пересекает сторону CD и четыре получившихся прямоугольных треугольника равны. Перед этим Ваня выбирает на листе случайную точку F. Найдите вероятность того, что Митя сможет сделать красивый сгиб, проходящий через точку F.

ВверхВниз   Решение


Автор: Храбров А.

Даны многочлены  f(x) и g(x) с целыми неотрицательными коэффициентами, m – наибольший коэффициент многочлена  f. Известно, что для некоторых натуральных чисел  a < b  имеют место равенства  f(a) = g(a)  и  f(b) = g(b).  Докажите, что если  b > m,  то многочлены  f и g совпадают.

ВверхВниз   Решение


На сторонах AB, BC и AC треугольника ABC взяты соответственно точки C1, A1 и B1, причём  AC1 : C1B = BA1 : A1C = CB1 : B1A = 2 : 1.
Найдите площадь треугольника, вершины которого – попарные пересечения отрезков AA1, BB1, CC1, если площадь треугольника ABC равна 1.

ВверхВниз   Решение


Основание пирамиды PABCD – параллелограмм ABCD . Точка N – середина ребра AP , точка K – середина медианы PL треугольника BPC , точка M лежит на ребре PB , причём PM = 5MB . В каком отношении плоскость, проходящая через точки M , N , K , делит объём пирамиды PABCD ?

ВверхВниз   Решение


В шестиугольниках записаны цифры и знаки арифметических действий так, как показано на рисунке. Требуется, начав с одного из шестиугольников и переходя в соседний, обойти все по одному разу. При этом надо записывать в строку то, что в них написано, и в итоге получить верное равенство. Какое?

ВверхВниз   Решение


Автор: Фольклор

Есть 40 одинаковых шнуров. Если поджечь любой шнур с одной стороны, он сгорает, а если с другой – не горит. Вася раскладывает шнуры в виде квадрата (см. рисунок, каждый шнур – сторона клетки). Затем Петя расставляет 12 запалов. Сможет ли Вася разложить шнуры так, что Пете не удастся сжечь все шнуры?

ВверхВниз   Решение


Докажите, что любое натуральное число можно представить в виде суммы нескольких различных членов последовательности Фибоначчи. (Последовательность Фибоначчи {an} определяется условиями a1=1, a2=2, an+2=an+1+an.)

ВверхВниз   Решение


Из четырёх неравенств  2x > 70,  x < 100,  4x > 25  и  x > 5  два истинны и два ложны. Найдите значение x, если известно, что оно целое.

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 17]      



Задача 116145

Темы:   [ Логика и теория множеств (прочее) ]
[ Линейные неравенства и системы неравенств ]
Сложность: 2+
Классы: 7,8,9

Из четырёх неравенств  2x > 70,  x < 100,  4x > 25  и  x > 5  два истинны и два ложны. Найдите значение x, если известно, что оно целое.

Прислать комментарий     Решение

Задача 66563

Тема:   [ Логика и теория множеств (прочее) ]
Сложность: 3
Классы: 6,7,8,9,10,11

Автор: Фольклор

Среди зрителей кинофестиваля было поровну мужчин и женщин. Всем зрителям понравилось одинаковое количество фильмов. Каждый фильм понравился восьми зрителям. Докажите, что не менее $3/7$ фильмов обладают следующим свойством: среди зрителей, которым фильм понравился, не менее двух мужчин.
Прислать комментарий     Решение


Задача 67145

Темы:   [ Логика и теория множеств (прочее) ]
[ Доказательство от противного ]
Сложность: 3
Классы: 6,7,8,9

Можно ли раскрасить все натуральные числа, большие 1, в три цвета (каждое число – в один цвет, все три цвета должны использоваться) так, чтобы цвет произведения любых двух чисел разного цвета отличался от цвета каждого из сомножителей?
Прислать комментарий     Решение


Задача 67178

Тема:   [ Логика и теория множеств (прочее) ]
Сложность: 3
Классы: 7,8,9

На столе в ряд стоят $23$ шкатулки, в одной из которых находится приз. На каждой шкатулке написано либо «Здесь приза нет», либо «Приз в соседней шкатулке». Известно, что ровно одно из этих утверждений правдиво. Что написано на средней шкатулке?
Прислать комментарий     Решение


Задача 67455

Тема:   [ Логика и теория множеств (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Герцог Сумматор выбрал некоторые вещественные числа (хотя бы одно, но, возможно, бесконечное количество). То же самое сделал герцог Вычитатор. Оказалось, что если $x$ является числом Сумматора, а $y$ является числом Вычитатора, то $x+y$ является числом Сумматора, а $y - x$ является числом Вычитатора. Обязательно ли все числа Сумматора являются числами Вычитатора?
Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .