|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На одной из сторон данного острого угла лежит точка A. Постройте на этой же стороне угла точку, равноудаленную от второй стороны угла и от точки A. Найти все натуральные числа p, что p, p² + 4 и p² + 6 – простые числа. Основание пирамиды – равнобедренный треугольник с углом ϕ при вершине. Все боковые рёбра пирамиды равны a . Найдите объём пирамиды, если радиус окружности, вписанной в треугольник основания, равен r . Какое наименьшее количество клеток требуется отметить на шахматной доске, чтобы каждая клетка доски (отмеченная или неотмеченная) граничила по стороне хотя бы с одной отмеченной клеткой? В полукруг радиуса R с центром в точке O вписан квадрат ABCD так, что точки A и D лежат на диаметре, а точки B и C – на окружности. Найдите радиус окружности, вписанной в треугольник OBC . Докажите, что биссектриса равнобедренного треугольника, проведённая из вершины, является медианой и высотой. Миша сложил из восьми брусков куб (см. рис.). Все бруски имеют один и тот же объём, серые бруски одинаковые и белые бруски тоже одинаковые. Какую часть ребра куба составляют длина, ширина и высота белого бруска? Квадрат 8×8 распилили на квадраты 2×2 и прямоугольники 1×4. При этом общая длина распилов оказалась равна 54. Точка M – середина ребра AD тетраэдра ABCD . Точка N лежит на продолжении ребра AB за точку B , точка K – на продолжении ребра AC за точку C , причём BN = AB и CK = 2AC . Постройте сечение тетраэдра плоскостью MNK . В каком отношении эта плоскость делит рёбра DB и DC ? 30 команд сыграли турнир по олимпийской системе. Сколько всего было сыграно матчей? Многогранник описан около сферы. Назовем его грань большой, если проекция сферы на плоскость грани целиком попадает в грань. Докажите, что больших граней не больше 6. |
Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]
Пусть M – центр тяжести (точка пересечения медиан) треугольника ABC. При повороте на 120° вокруг точки M точка B переходит в точку P, при повороте на 240° вокруг точки M (в том же направлении) точка C переходит в точку Q. Докажите, что либо треугольник APQ – правильный, либо точки A, P, Q совпадают.
В правильной четырёхугольной усечённой пирамиде середина N ребра B1C1 верхней грани A1B1C1D1 соединена с серединой M ребра AB нижней грани ABCD. Прямые B1C1 и AB не лежат в одной плоскости. Докажите, что проекции рёбер B1C1 и AB на прямую MN равны между собой.
Страница: << 1 2 3 4 5 6 >> [Всего задач: 30] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|